To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There are two great equations of classical physics: one is Einstein’s equation of general relativity, the other the Navier-Stokes equation that describes how fluids flow. In this chapter, we meet Navier-Stokes.
This equation differs from the Euler equation by the addition of a viscosity term. This is not a small change and makes solutions to the Navier-Stokes equation much richer and more subtle than those of the Euler equation. In this chapter, we begin our exploration of these solutions.
This contribution covers the topic of my talk at the 2016-17 Warwick-EPSRC Symposium: 'PDEs and their applications'. As such it contains some already classical material and some new observations. The main purpose is to compare several avatars of the Kato criterion for the convergence of a Navier-Stokes solution, to a regular solution of the Euler equations, with numerical or physical issues like the presence (or absence) of anomalous energy dissipation, the Kolmogorov 1/3 law or the Onsager C^{0,1/3} conjecture. Comparison with results obtained after September 2016 and an extended list of references have also been added.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.