Recent experiments of fast electron heating of aluminum foil targets have been analyzed by means of hybrid PIC simulations. A suitable initial angular distribution of fast electrons has been used and the diameter of the fast electron source has been fitted to reproduce with the same simulation parameters the beam divergence, Kα yields and temperatures at the target rear surface measured in the experiments. This results in a consistent description of the fast electron propagation that can be useful in general for simulations of laser-driven fast electron transport in dense media.