To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The hard-core model has as its configurations the independent sets of some graph instance $G$. The probability distribution on independent sets is controlled by a ‘fugacity’ $\lambda \gt 0$, with higher $\lambda$ leading to denser configurations. We investigate the mixing time of Glauber (single-site) dynamics for the hard-core model on restricted classes of bounded-degree graphs in which a particular graph $H$ is excluded as an induced subgraph. If $H$ is a subdivided claw then, for all $\lambda$, the mixing time is $O(n\log n)$, where $n$ is the order of $G$. This extends a result of Chen and Gu for claw-free graphs. When $H$ is a path, the set of possible instances is finite. For all other $H$, the mixing time is exponential in $n$ for sufficiently large $\lambda$, depending on $H$ and the maximum degree of $G$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.