Current liver-stage Plasmodium falciparum models are complex, expensive and largely inaccessible, hindering research progress. Here, we show that a 3D liver spheroid model grown from immortalized HepG2/C3A cells supports the complete intrahepatocytic lifecycle of P. falciparum. Our results demonstrate sporozoite infection, development of exoerythrocytic forms and breakthrough infection into erythrocytes. The 3D-grown spheroid hepatocytes are structurally and functionally polarized, displaying enhanced albumin and urea production and increased expression of key metabolic enzymes, mimicking in vivo conditions – relative to 2D cultures. This accessible, reproducible model lowers barriers to malaria research, promoting advancements in fundamental biology and translational research.