To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the central limit theorem (CLT), the first-order Edgeworth expansion and a mixing local central limit theorem (MLCLT) for Birkhoff sums of a class of unbounded heavily oscillating observables over a family of full-branch piecewise $C^2$ expanding maps of the interval. As a corollary, we obtain the corresponding results for Boolean-type transformations on $\mathbb {R}$. The class of observables in the CLT and the MLCLT on $\mathbb {R}$ include the real part, the imaginary part and the absolute value of the Riemann zeta function. Thus obtained CLT and MLCLT for the Riemann zeta function are in the spirit of the results of Lifschitz & Weber [Sampling the Lindelöf hypothesis with the Cauchy random walk. Proc. Lond. Math. Soc. (3)98 (2009), 241–270] and Steuding [Sampling the Lindelöf hypothesis with an ergodic transformation. RIMS Kôkyûroku BessatsuB34 (2012), 361–381] who have proven the strong law of large numbers for sampling the Lindelöf hypothesis.
In applications of item response theory (IRT), it is often of interest to compute confidence intervals (CIs) for person parameters with prescribed frequentist coverage. The ubiquitous use of short tests in social science research and practices calls for a refinement of standard interval estimation procedures based on asymptotic normality, such as the Wald and Bayesian CIs, which only maintain desirable coverage when the test is sufficiently long. In the current paper, we propose a simple construction of second-order probability matching priors for the person parameter in unidimensional IRT models, which in turn yields CIs with accurate coverage even when the test is composed of a few items. The probability matching property is established based on an expansion of the posterior distribution function and a shrinkage argument. CIs based on the proposed prior can be efficiently computed for a variety of unidimensional IRT models. A real data example with a mixed-format test and a simulation study are presented to compare the proposed method against several existing asymptotic CIs.
Higher-order approximations to the distributions of fit indexes for structural equation models under fixed alternative hypotheses are obtained in nonnormal samples as well as normal ones. The fit indexes include the normal-theory likelihood ratio chi-square statistic for a posited model, the corresponding statistic for the baseline model of uncorrelated observed variables, and various fit indexes as functions of these two statistics. The approximations are given by the Edgeworth expansions for the distributions of the fit indexes under arbitrary distributions. Numerical examples in normal and nonnormal samples with the asymptotic and simulated distributions of the fit indexes show the relative inappropriateness of the normal-theory approximation using noncentral chi-square distributions. A simulation for the confidence intervals of the fit indexes based on the normal-theory Studentized estimators under normality with a small sample size indicates an advantage for the approximation by the Cornish–Fisher expansion over those by the noncentral chi-square distribution and the asymptotic normality.
We present a simple approximation to the conditional distribution of goodness-of-fit statistics for the Rasch model, assuming that the item difficulties are known. The approximation is easily programmed, and gives relatively accurate assessments of conditional p-values for tests of length 10 or more. A few generalizations are discussed.
In this article we propose a bootstrap test for the probability of ruin in the compound Poisson risk process. We adopt the P-value approach, which leads to a more complete assessment of the underlying risk than the probability of ruin alone. We provide second-order accurate P-values for this testing problem and consider both parametric and nonparametric estimators of the individual claim amount distribution. Simulation studies show that the suggested bootstrap P-values are very accurate and outperform their analogues based on the asymptotic normal approximation.
Let X = (X(t):t ≥ 0) be a Lévy process and X∊ the compensated sum of jumps not exceeding ∊ in absolute value, σ2(∊) = var(X∊(1)). In simulation, X - X∊ is easily generated as the sum of a Brownian term and a compound Poisson one, and we investigate here when X∊/σ(∊) can be approximated by another Brownian term. A necessary and sufficient condition in terms of σ(∊) is given, and it is shown that when the condition fails, the behaviour of X∊/σ(∊) can be quite intricate. This condition is also related to the decay of terms in series expansions. We further discuss error rates in terms of Berry-Esseen bounds and Edgeworth approximations.
A two-term Edgeworth expansion for the distribution of an M-estimator of a simple linear regression parameter is obtained without assuming any Cramér-type conditions. As an application, it is shown that certain modification of the naive bootstrap procedure is second order correct even when the error variables have a lattice distribution. This is in marked contrast with the results of Singh on the sample mean of independent and identically distributed random variables.
The Edgeworth expansion gives an indication of the rate of convergence of the distribution function of the sum of a fixed number of random variables to the normal distribution. A similar expansion is given here for the distribution function of the sum of a random number N of random variables, when the probability generating function of N takes a special form.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.