To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Electronic Health Record (EHR) data are critical for advancing translational research and AI technologies. The ENACT network offers access to structured EHR data across 57 CTSA hubs. However, substantial information is contained in clinical narratives, requiring natural language processing (NLP) for research. The ENACT NLP Working Group was formed to make NLP-derived clinical information accessible and queryable across the network.
Methods:
We established the ENACT NLP Working Group with 13 sites selected based on criteria including clinical notes access, IT infrastructure, NLP expertise, and institutional support. We divided sites into five focus groups targeting clinical tasks within disease contexts. Each focus group consisted of two development sites and two validation sites. We extended the ENACT ontology to standardize NLP-derived data and conducted multisite evaluations using the Open Health Natural Language Processing (OHNLP) Toolkit.
Results:
The working group achieved 100% site retention and deployed NLP infrastructure across all sites. We developed and validated NLP algorithms for rare disease phenotyping, social determinants of health, opioid use disorder, sleep phenotyping, and delirium phenotyping. Performance varied across sites (F1 scores 0.53–0.96), highlighting data heterogeneity impacts. We extended the ENACT common data model and ontology to incorporate NLP-derived data while maintaining Shared Health Research Informatics NEtwork (SHRINE) compatibility.
Conclusion:
This demonstrates feasibility of deploying NLP infrastructure across large, federated networks. The focus group approach proved more practical than general-purpose approaches. Key lessons include the challenge of data heterogeneity and importance of collaborative governance. This work also provides a foundation that other networks can build on to implement NLP capabilities for translational research.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.