To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the distribution of the temperature within a body where the heat is transported only by radiation. Specifically, we consider the situation where both emission-absorption and scattering processes take place. We study the initial-boundary value problem given by the coupling of the radiative transfer equation with the energy balance equation on a convex domain $ \Omega \subset {\mathbb{R}}^3$ in the diffusion approximation regime, that is, when the mean free path of the photons tends to zero. Using the method of matched asymptotic expansions, we will derive the limit initial-boundary value problems for all different possible scaling limit regimes, and we will classify them as equilibrium or non-equilibrium diffusion approximation. Moreover, we will observe the formation of boundary and initial layers for which suitable equations are obtained. We will consider both stationary and time-dependent problems as well as different situations in which the light is assumed to propagate either instantaneously or with finite speed.
We consider a single server queue that has a threshold to change its arrival process and service speed by its queue length, which is referred to as a two-level GI/G/1 queue. This model is motivated by an energy saving problem for a single server queue whose arrival process and service speed are controlled. To obtain its performance in tractable form, we study the limit of the stationary distribution of the queue length in this two-level queue under scaling in heavy traffic. Except for a special case, this limit corresponds to its diffusion approximation. It is shown that this limiting distribution is truncated exponential (or uniform if the drift is null) below the threshold level and exponential above it under suitably chosen system parameters and generally distributed interarrival times and workloads brought by customers. This result is proved under a mild limitation on arrival parameters using the so-called basic adjoint relationship (BAR) approach studied in Braverman, Dai, and Miyazawa (2017, 2024) and Miyazawa (2017, 2024). We also intuitively discuss about a diffusion process corresponding to the limit of the stationary distribution under scaling.
Chapter 4 introduces phenomenologically the radiative transfer equation of the directional distribution of the energy density for a given anisotropic scattering coefficient of scalar waves in random media. We solve the radiative transfer equation analytically by using the Legendre expansion for isotropic radiation from a point source. By probabilistically interpreting the Born scattering coefficient and the Eikonal angular spectrum function and the traveling distance fluctuation for scalar waves, we construct the corresponding pseudo-random number generators, where the rejection sampling method is introduced. Then, we synthesize the space–time distribution of the energy density for isotropic radiation from a point source using the MC simulation and compare it with the analytical solution of the radiative transfer equation.
Continuous-time Markov chains are frequently used to model the stochastic dynamics of (bio)chemical reaction networks. However, except in very special cases, they cannot be analyzed exactly. Additionally, simulation can be computationally intensive. An approach to address these challenges is to consider a more tractable diffusion approximation. Leite and Williams (Ann. Appl. Prob.29, 2019) proposed a reflected diffusion as an approximation for (bio)chemical reaction networks, which they called the constrained Langevin approximation (CLA) as it extends the usual Langevin approximation beyond the first time some chemical species becomes zero in number. Further explanation and examples of the CLA can be found in Anderson et al. (SIAM Multiscale Modeling Simul.17, 2019).
In this paper, we extend the approximation of Leite and Williams to (nearly) density-dependent Markov chains, as a first step to obtaining error estimates for the CLA when the diffusion state space is one-dimensional, and we provide a bound for the error in a strong approximation. We discuss some applications for chemical reaction networks and epidemic models, and illustrate these with examples. Our method of proof is designed to generalize to higher dimensions, provided there is a Lipschitz Skorokhod map defining the reflected diffusion process. The existence of such a Lipschitz map is an open problem in dimensions more than one.
We study 2-stage game-theoretic problem oriented 3-stage service policy computing, convolutional neural network (CNN) based algorithm design, and simulation for a blockchained buffering system with federated learning. More precisely, based on the game-theoretic problem consisting of both “win-lose” and “win-win” 2-stage competitions, we derive a 3-stage dynamical service policy via a saddle point to a zero-sum game problem and a Nash equilibrium point to a non-zero-sum game problem. This policy is concerning users-selection, dynamic pricing, and online rate resource allocation via stable digital currency for the system. The main focus is on the design and analysis of the joint 3-stage service policy for given queue/environment state dependent pricing and utility functions. The asymptotic optimality and fairness of this dynamic service policy is justified by diffusion modeling with approximation theory. A general CNN based policy computing algorithm flow chart along the line of the so-called big model framework is presented. Simulation case studies are conducted for the system with three users, where only two of the three users can be selected into the service by a zero-sum dual cost game competition policy at a time point. Then, the selected two users get into service and share the system rate service resource through a non-zero-sum dual cost game competition policy. Applications of our policy in the future blockchain based Internet (e.g., metaverse and web3.0) and supply chain finance are also briefly illustrated.
A diffusion approximation to a risk process under dynamic proportional reinsurance is considered. The goal is to minimise the discounted time in drawdown; that is, the time where the distance of the present surplus to the running maximum is larger than a given level $d > 0$. We calculate the value function and determine the optimal reinsurance strategy. We conclude that the drawdown measure stabilises process paths but has a drawback as it also prevents surpassing the initial maximum. That is, the insurer is, under the optimal strategy, not interested in any more profits. We therefore suggest using optimisation criteria that do not avoid future profits.
We analyze the discounted probability of exponential Parisian ruin for the so-called scaled classical Cramér–Lundberg risk model. As in Cohen and Young (2020), we use the comparison method from differential equations to prove that the discounted probability of exponential Parisian ruin for the scaled classical risk model converges to the corresponding discounted probability for its diffusion approximation, and we derive the rate of convergence.
The logistic birth and death process is perhaps the simplest stochastic population model that has both density-dependent reproduction and a phase transition, and a lot can be learned about the process by studying its extinction time, $\tau_n$, as a function of system size n. A number of existing results describe the scaling of $\tau_n$ as $n\to\infty$ for various choices of reproductive rate $r_n$ and initial population $X_n(0)$ as a function of n. We collect and complete this picture, obtaining a complete classification of all sequences $(r_n)$ and $(X_n(0))$ for which there exist rescaling parameters $(s_n)$ and $(t_n)$ such that $(\tau_n-t_n)/s_n$ converges in distribution as $n\to\infty$, and identifying the limits in each case.
Radiation generated in the deep interior of a star undergoes a diffusion between multiple encounters with the stellar material before it can escape freely into space from the stellar surface. We define the optical depth by the number of mean free paths a photon takes from the center to the surface. This picture of photons undergoing a random walk through the stellar interior can be formalized in terms of a diffusion model for radiation transport in the interior.
A general multi-type population model is considered, where individuals live and reproduce according to their age and type, but also under the influence of the size and composition of the entire population. We describe the dynamics of the population as a measure-valued process and obtain its asymptotics as the population grows with the environmental carrying capacity. Thus, a deterministic approximation is given, in the form of a law of large numbers, as well as a central limit theorem. This general framework is then adapted to model sexual reproduction, with a special section on serial monogamic mating systems.
The De Vylder and Goovaerts conjecture is an open problem in risk theory, stating that the finite-time ruin probability in a standard risk model is greater than or equal to the corresponding ruin probability evaluated in an associated model with equalized claim amounts. Equalized means here that the jump sizes of the associated model are equal to the average jump in the initial model between 0 and a terminal time T.In this paper, we consider the diffusion approximations of both the standard risk model and its associated risk model. We prove that the associated model, when conveniently renormalized, converges in distribution to a Gaussian process satisfying a simple SDE. We then compute the probability that this diffusion hits the level 0 before time T and compare it with the same probability for the diffusion approximation for the standard risk model. We conclude that the De Vylder and Goovaerts conjecture holds for the diffusion limits.
In large storage systems, files are often coded across several servers to improve reliability and retrieval speed. We study load balancing under the batch sampling routeing scheme for a network of n servers storing a set of files using the maximum distance separable (MDS) code (cf. Li (2016)). Specifically, each file is stored in equally sized pieces across L servers such that any k pieces can reconstruct the original file. When a request for a file is received, the dispatcher routes the job into the k-shortest queues among the L for which the corresponding server contains a piece of the file being requested. We establish a law of large numbers and a central limit theorem as the system becomes large (i.e. n → ∞), for the setting where all interarrival and service times are exponentially distributed. For the central limit theorem, the limit process take values in ℓ2, the space of square summable sequences. Due to the large size of such systems, a direct analysis of the n-server system is frequently intractable. The law of large numbers and diffusion approximations established in this work provide practical tools with which to perform such analysis. The power-of-d routeing scheme, also known as the supermarket model, is a special case of the model considered here.
An optimal selection problem for bid and ask quotes subject to a stock inventory constraint is investigated, formulated as a constrained utility maximisation problem over a finite time horizon. The arrivals of buy and sell orders are governed by Poisson processes, and a diffusion approximation is employed on assuming the Poisson arrivals intensity is sufficiently large. Using the dynamic programming principle, we adopt an efficient numerical procedure to solve this constrained utility maximisation problem based on a successive approximation algorithm, and conduct numerical experiments to analyse the impacts of the inventory constraint on a dealer's terminal profit and stock inventory level. It is found that the stock inventory constraint significantly affects the terminal stock inventory level.
In this paper we study a reinsurance game between two insurers whose surplus processes are modeled by arithmetic Brownian motions. We assume a minimax criterion in the game. One insurer tries to maximize the probability of absolute dominance while the other tries to minimize it through reinsurance control. Here absolute dominance is defined as the event that liminf of the difference of the surplus levels tends to -∞. Under suitable parameter conditions, the game is solved with the value function and the Nash equilibrium strategy given in explicit form.
In this paper we introduce discrete-time semi-Markov random evolutions (DTSMREs) and study asymptotic properties, namely, averaging, diffusion approximation, and diffusion approximation with equilibrium by the martingale weak convergence method. The controlled DTSMREs are introduced and Hamilton–Jacobi–Bellman equations are derived for them. The applications here concern the additive functionals (AFs), geometric Markov renewal chains (GMRCs), and dynamical systems (DSs) in discrete time. The rates of convergence in the limit theorems for DTSMREs and AFs, GMRCs, and DSs are also presented.
In this paper, a singular semi-linear parabolic PDE with locally periodiccoefficients is homogenized. We substantially weaken previous assumptions onthe coefficients. In particular, we prove new ergodic theorems. We show thatin such a weak setting on the coefficients, the proper statement of thehomogenization property concerns viscosity solutions, though we need abounded Lipschitz terminal condition.
Consider a random walk S=(Sn: n≥0) that is ‘perturbed’ by a stationary sequence (ξn: n≥0) to produce the process S=(Sn+ξn: n≥0). In this paper, we are concerned with developing limit theorems and approximations for the distribution of Mn=max{Sk+ξk: 0≤k≤n} when the random walk has a drift close to 0. Such maxima are of interest in several modeling contexts, including operations management and insurance risk theory. The associated limits combine features of both conventional diffusion approximations for random walks and extreme-value limit theory.
We present a domain decomposition theory on an interface problemfor the linear transport equation between a diffusive and a non-diffusive region.To leading order, i.e. up to an error of the order of the mean free path in thediffusive region, the solution in the non-diffusive region is independent of thedensity in the diffusive region. However, the diffusive and the non-diffusive regionsare coupled at the interface at the next order of approximation. In particular, ouralgorithm avoids iterating the diffusion and transport solutions as is done in mostother methods — see for example Bal–Maday (2002). Our analysis is based instead on an accurate description of the boundarylayer at the interface matching the phase-space density of particles leaving thenon-diffusive region to the bulk density that solves the diffusion equation.
Motivated by edge behaviour reported for biological organisms, we show that random walks with a bias at a boundary lead to a discontinuous probability density across the boundary. We continue by studying more general diffusion processes with such a discontinuity across an interior boundary. We show how hitting probabilities, occupancy times and conditional occupancy times may be solved from problems that are adjoint to the original diffusion problem. We highlight our results with a biologically motivated example, where we analyze the movement behaviour of an individual in a network of habitat patches surrounded by dispersal habitat.
We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients.Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slowand fast variables. Passing to the limit, we are led to an effective drift-diffusion equation.We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.