To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Beth’s theorem equating explicit and implicit definability fails in all logics between Meyer’s basic logic ${\mathbf B}$ and the logic ${\mathbf R}$ of Anderson and Belnap. This result has a simple proof that depends on the fact that these logics do not contain classical negation; it does not extend to logics such as $\mathbf{KR}$ that contain classical negation. Jacob Garber, however, showed that Beth’s theorem fails for $\mathbf{KR}$ by adapting Ralph Freese’s result showing that epimorphisms may not be surjective in the category of modular lattices. We extend Garber’s result to show that the Beth theorem fails in all logics between ${\mathbf B}$ and $\mathbf{KR}$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.