To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study investigates the accumulation of glycogen, amino acids, and fatty acids in male Mytilus coruscus during different stages of gonadal development and explores their relationships with reproductive processes. Glycogen levels were highest during the resting phase, decreasing progressively during the proliferation and maturation phases. A positive correlation was observed between glycogen and carbon content, indicating a close association between energy storage and metabolic processes. Amino acid content, particularly essential amino acids (EAAs), increased during gonadal development, reflecting the higher demand for protein synthesis and cellular metabolism. Branched-chain amino acids (BCAAs) such as isoleucine, leucine, and lysine were key in activating protein synthesis and supporting gametogenesis. Non-essential amino acids like aspartic acid, glutamic acid, and glycine also accumulate, supporting cellular function and reproductive regulation. Fatty acids, especially unsaturated fatty acids (UFAs) and polyunsaturated fatty acids (PUFAs), progressively accumulated in the testes, highlighting their role in energy supply and membrane integrity during gametogenesis. Phosphorus (P) accumulated in parallel with fatty acids, supporting DNA and RNA synthesis, energy metabolism, and cell membrane function. This study emphasizes the crucial role of these biochemical components in supporting gonadal development in male M. coruscus, providing insights into the metabolic pathways involved in marine bivalve reproduction.
Coastal wetlands, known for their remarkable productivity and diverse ecological functions, face growing threats from aquaculture expansion, which can fragment natural habitats and disrupt water flow. In this study, we focused on White-bellied Sea-Eagles Haliaeetus leucogaster along the eastern coast of Odisha, India, to see how these top predators adapt to accelerating aquaculture. Across 22 nesting sites over three breeding seasons (2021–2024), we analysed 3,319 prey items, and found that fish dominated at 66.89%, followed by birds (25.64%), reptiles (3.31%), invertebrates (3.16%), and mammals (0.99%). Using generalised additive models (GAMs), we evaluated various landscape factors influencing the proportion of fish in WBSE diets. Our results revealed that shorter distances to natural water-bodies and higher water coverage strongly influenced higher fish intake, while aquaculture-related variables did not increase fish consumption. These patterns indicate that WBSEs favour wild fish in less-disturbed wetlands, likely because of better energy returns, lower risks, and convenient perching spots. Consequently, our findings highlight the need to safeguard natural aquatic habitats for sustaining apex predators and point to ways of reconciling aquaculture growth with wetland conservation. By clarifying how the eagles respond to changes in coastal landscapes, we offer key insights for preserving biodiversity under fast-paced environmental transformation.
The use of antibiotics in fish and shrimp aquaculture all over the world was found to be only partially successful in preventing infectious diseases. However, their overuse has resulted in the contamination of closed aquatic ecosystems, reduced antibiotic resistance in organisms that fight infectious diseases, and compromised the effectiveness of various antibiotic medications in controlling diseases. Excessive use of antibiotics damages aquaculture species and impacts human health, also rendering the most potent antibiotics increasingly ineffective, with limited alternatives. Therefore, intensive research efforts have been made to replace antibiotics with other protocols and methods like vaccines, phage therapy, quorum quenching technology, probiotics, prebiotics, chicken egg yolk antibody (IgY), and plant therapy,” etc. Though all these methods have great potential, many of them are still in the experimental stage, except for fish vaccines. All these alternative technologies need to be carefully standardized and evaluated before implementation. In recent times, after realizing the importance of the gut microbiome community in maintaining the health of animals, efforts have been made to use the microbiome strains for the prevention of pathogenic bacterial and viral infections. Now it has been experimentally proven that animals should possess a healthy microbiome community in their gut tract to strengthen the immune system and prevent the entry of harmful pathogens. Investigations are now being carried out on the derivation of various bioactive compounds from the gut microbiome strains and their structural profile and functionality using the molecular tools of metagenomics and bioinformatics. Such newly discovered compounds from microbiomes can be used as potential alternatives to replace antibiotic drugs in the aquaculture industry. These alternatives are likely to emerge as breakthroughs in animal health management and farming, with effects on cost efficiency, species health, productivity, and yield enhancement. Therefore, introducing new micro-innovative technologies into an overall health management plan will be highly beneficial.
There is increasing recognition that the welfare needs of cephalopod molluscs and decapod crustaceans are important. Current commercial practices involving these animals include a range of potential threats to their welfare, such as conditions of farming, capture, transport, and slaughter. This article draws from and updates our 2021 review for the UK Government, recommending a range of relatively simple and impactful changes that could benefit welfare while highlighting important research gaps that should be prioritised to facilitate the drafting of guidelines for best-practice.
Stocks of Pacific Bluefin tuna continue to decline to dangerous levels, with figures published in an International Scientific Committee report in April estimating that spawning stock levels are now less than three percent of their unfished levels. In line with international recommendations, Japan, which consumes 80 percent of the world's tuna, has implemented measures to counter the trend. However, some experts question their efficacy, and warn that, if current catch levels continue, Bluefin may well be a leading topic of discussion at the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) when members meet in Johannesburg later this year,.
Conservation aquaculture, defined as cultivating aquatic organisms to manage or replenish natural populations, has been advocated as a strategy to enhance fisheries production and help restore declining populations. Culture is especially compelling for species in steep decline and for which there is established methodology. The queen conch Aliger gigas is an example of a species with widely overexploited populations, with attempts to culture the species commercially ongoing for > 40 years. However, hatchery-releases have shown low survival from post-settlement to near maturity, leading to low conservation aquaculture potential. When this is viewed alongside large-scale fishery extractions, it is apparent that it is not commercially feasible to replace wild harvest nor ecologically feasible to replenish queen conch populations using existing aquaculture approaches. An age-based mortality model estimates the magnitude of culture required to replace a single adult of reproductive age. Extrapolations from catch–weight relationships highlight the scale of facilities and costs required to partially offset the harvest in a typical Caribbean fishery. Estimates of reproduction to achieve replacement suggest a greater yield from properly protecting natural breeding aggregations. Queen conch aquaculture is useful for scientific inquiry, community engagement and education, but not for stock enhancement or population restoration without more practical and cost-efficient options. Therefore, protecting breeding aggregations should be prioritized for the ecological viability of the species, as well as for its economic value for the people and industries that rely upon it.
A new species of Myxobolidae, Henneguya cardii n. sp., is described infecting the European seabass Dicentrarchus labrax, a fish of high commercial value intensively cultivated in southern Europe. Henneguya cardii n. sp. was found in the bulbus arteriosus and spleen with a prevalence of infection of 13.5%. In the heart, it forms irregular whitish plasmodia measuring 1 mm in size. Mature myxospores are broadly obovoid in frontal view and ellipsoidal in lateral view, with 2 equal caudal appendages. Polar capsules are ovoid and symmetric, with 3–4 polar tubule coils. Myxospores measure 10.2 ± 0.6 (8.8–11.6) μm in length, 8.0 ± 0.7 (5.3–8.8) μm in width and 5.6 ± 0.2 (5.1–6.4) μm in thickness. Caudal appendages are 36.6 ± 3.2 (27.4–42.9) μm long. Total spore length is 47.6 ± 3.2 (41.2–53.2) μm. Polar capsules measure 4.0 ± 0.2 (3.4–4.6) by 2.2 ± 0.1 (1.9–2.6) μm. Small subunit ribosomal RNA-based tree topologies position H. cardii n. sp. within a lineage of marine myxobolids that is mostly comprised of other Henneguya species. Host-relatedness is reinforced as the main evolutionary driver for myxobolids, with the positioning of H. cardii n. sp. further suggesting tissue tropism as another important evolutionary driver for marine heart infecting Henneguya. Nonetheless, the inner complexity of this lineage suggests that identification of the evolutionary patterns driving its phylogeny will require discovery of the true diversity of marine myxobolids.
We herein investigated the influence of temperature on the embryonic development (from fertilisation to hatching) of Mugil liza larvae. For this purpose, oocytes (>600 μm) and sperm were obtained from breeding stock at the laboratory of marine fish culture (LAPMAR). After fertilisation, 1200 eggs were distributed in 12 cylindrical experimental units of 400 mL under four different temperatures 18, 22, 26 and 30 ºC, all in triplicate. Every 15 min until hatching, about 10 eggs were randomly sampled in each treatment. The eggs were visualized and photographed, and the classification of embryonic stages was performed. Temperature influenced the main events of the embryonic development of M. liza. More accelerated development was observed according to the increase in temperature until the gastrula phase. At temperatures of 22 and 26 °C, embryonic development occurred from fertilisation to hatching of the larvae. In the 18 °C treatment, it was verified that most of the embryos ceased development during the final phase of cleavage and the beginning of blastula formation, while in the 30 °C treatment patterns of embryo malformation were also verified, with erratic divisions of the blastomeres, resulting in irregular cells. Unlike what was observed at a temperature of 18 °C, none of the embryos incubated at 30 °C reached the blastopore closure phase, stopping in the gastrula. The larvae hatched in the treatments at 22 and 26 °C were viable and exhibited intense swimming, with a large amount of reserve material (yolk) and an evident drop of oil.
We have developed probabilistic models to estimate the likelihood of harmful algae presence and outbreaks along the Norwegian coast, which can help optimization of the national monitoring program and the planning of mitigation actions. We employ support vector machines to calibrate probabilistic models for estimating the presence and harmful abundance (HA) of eight toxic algae found along the Norwegian coast, including Alexandrium spp., Alexandrium tamarense, Dinophysis acuta, Dinophysis acuminata, Dinophysis norvegica, Pseudo-nitzschia spp., Protoceratium reticulatum, and Azadinium spinosum. The inputs are sea surface temperature, photosynthetically active radiation, mixed layer depth, and sea surface salinity. The probabilistic models are trained with data from 2006 to 2013 and tested with data from 2014 to 2019. The presence models demonstrate good statistical performance across all taxa, with R (observed presence frequency vs. predicted probability) ranging from 0.69 to 0.98 and root mean squared error ranging from 0.84% to 7.84%. Predicting the probability of HA is more challenging, and the HA models only reach skill with four taxa (Alexandrium spp., A. tamarense, D. acuta, and A. spinosum). There are large differences in seasonal and geographical variability and sensitivity to the model input of different taxa, which are presented and discussed. The models estimate geographical regions and periods with relatively higher risk of toxic species presence and HA, and might optimize the harmful algae monitoring. The method can be extended to other regions as it relies only on remote sensing and model data as input and running national programs of toxic algae monitoring.
The evaluation of the effects of early starvation and feeding on survival and growth in the early stages of the life cycle of ornamental marine caridean shrimp species is fundamental to establish adequate feeding protocols in their culture. In this study, we determine the nutritional vulnerability in the early larval stages of ornamental shrimp Lysmata ankeri exposed to different periods of starvation or feeding. The larvae were separated into three groups (zoea I-ZI, zoea II with ZI fed, and zoea II with ZI unfed) and subjected to two experiments: (1) point-of-no-return (PNR), comprising one or two days of initial starvation followed by feeding; and (2) point-of-reserve-saturation (PRS), comprising one or two days of initial feeding followed by starvation. Each experiment was still composed of two control groups: continuous feeding and continuous starvation. Larvae tolerated some periods of starvation, with a high PNR value (2.00) and low PRS (0.50). Longer periods of starvation influenced both growth and survival rates in zoea II stages. The nutritional vulnerability index for zoea I was 0.25, which represents a low dependence on food supply. In this study, it was observed that ornamental shrimp L. ankeri larvae hatch with energy reserves, presenting facultative primary lecithotrophy, in which they are able to moult from zoea I to zoea II using such reserves in the absence of food. In this sense, the early larvae stages (zoeas I and II) can tolerate a certain period of starvation, indicating the great potential of this species for aquaculture.
Sustainability and sustainable development are the buzzwords of our era. Nowhere is this clearer than in primary production/extraction industries, such as aquaculture and fisheries. Yet in the seafood sector (as with many others), the term continues to be used most commonly in relation to the environmental dimension; much less is known about social and economic sustainability. In this review, we explore what is known about social sustainability in the seafood sector. We identify seven key thematic areas: livelihoods and human development; human rights; social, psychological, and cultural needs; equitable access to resource and benefit sharing; a voice in public issues; flow-on benefits for local and regional economies and improved infrastructure and access. We reveal that while there has been a clear focus on developing social sustainability indicators, this has largely missed more relational and subjective aspects of social sustainability. We also show that some thematic areas of social sustainability also remain underdeveloped. Overall, we argue that it is imperative that we address the knowledge gaps and incorporate what we already know about social sustainability into existing industry and governance processes. If we do not, not only risk not achieving the Sustainable Development Goals, but we also risk moving closer towards environmental and societal collapse.
As the Middle Ages drew to a close, however, a rising share of Europeans were eating fish from systems other than their natural local waters. By 1500 around Paris, for instance, elite menus featured carp and headless codfish, while lesser folk made do with herring and haddock. Beside the Mediterranean, Valencia was receiving millions of Atlantic sardines and hake, while Romans could get herring from the North Sea, Norwegian cod, and tuna from Sicily. Both cultured carp and fishes from Europe’s economic frontiers changed Europeans’ relations with aquatic nature.
Carp aquaculture colonized nature, creating artificial habitats to rear an organism alien to western Europe. Late fifteenth- and early sixteenth-century financial records and instructional manuals from east-central Europe detail an original and distinctive European mode for farming fish. Those practices provide a benchmark to identify and trace their creation in twelfth- to thirteenth-century France – where the carp was a late invader – and subsequent spread eastwards of the innovation. Human-controlled aquaculture created thousands of local ecological revolutions across interior Europe, providing inland elites with a steady source of live fresh fish, serving as a vehicle of elite power over subjected nature and people, and replacing indigenous ecosystems with private anthropogenic habitats tailored for domesticated, soon also feral, invaders. For contemporary writers fish had become objects of human agency.
In the coming decades, promoting the production of ecosystem service provisioning will become increasingly important in the U.S. Northeast, which is expected to experience a number of impacts as a result of climate change, including rising temperatures, changes in precipitation and seasonality, and sea-level rise, among others (U.S. Global Change Research Program 2020). Incentives have been shown to motivate the adoption of sustainable production practices that provision ecosystem services across different types of working landscapes. Using data from a recent landscape assessment in the Northeast, this paper finds an incredible breadth of programs available to producers across a variety of working landscapes (e.g., agricultural lands and working forests) and for different production practices. These data also point to critical gaps in current programming and also highlight important opportunities for programmatic synergy and more holistic program design going forward. This paper concludes by discussing the results in the context of four main themes of particular relevance to the U.S. Northeast which include (1) working landbase and infrastructure, (2) livelihood provisioning, (3) scale, and (4) resilience.
Brazilian basslet Gramma brasiliensis is a fish highly appreciated by the marine ornamental industry. There is an increasing interest in the development of a breeding protocol for this species. However, descriptions of the reproductive biology, eggs and larval development are scarce. This study was the first to describe the spawning, eggs and larvae of G. brasiliensis in captivity, including mouth size information. Six spawning events produced egg masses with 27, 127, 600, 750, 850, and 950 eggs. Larger egg masses showed embryos with at least two different developmental stages. Eggs are spherical (∼1.0 mm diameter), held together by filaments entangling chorionic projections. Larvae with fewer than 12 hph (hours post-hatch) presented 3.55 mm standard-length, well developed eyes, fully absorbed yolk sac, an inflated swim bladder and mouth opened. Exogenous feeding on rotifers began within 12 hph. The average mouth width at first feeding was 0.38 mm. The first settled larva was noted by day 21. This information should help to determine appropriate diets and prey-shift time during the larviculture of the species.
In nematodes, the structure of male copulatory organs is a significant taxonomic distinguisher and includes the morphometry of the spicules. The description of these structures mainly relies on the study of whole mounts using light microscopy. In rare instances, protruding spicules have been described with scanning electron microscopy. Even fewer studies have described the ultrastructure of isolated spicules following their isolation. In the present study, two different methods of spicule isolation were performed on two parasitic camallanid nematodes, Procamallanus (Procamallanus) pseudolaeviconchus Moravec & van As, 2015 and Paracamallanus cyathopharynx (Baylis, 1923), from African sharptooth catfish to determine the practicality and efficiency of the methodologies. The first method involved using sharpened tungsten needles and microdissection of the spicule pouch to free the spicules, followed by soft tissue digestion if necessary. Alternatively, the spicules were isolated through mechanical release instead of dissection in a method developed in the current study. This involved freeing the spicules from surrounding soft tissue by placing live specimens between a coverslip and a glass slide in a drop of water and exerting pressure with small rotational movements. Both methods yielded favourable results, but Method 2 is recommended for future studies due to the many advantages.
Global farmed finfish production increased from 9 to 56 million tonnes between 1990 and 2019. Although finfishes are now widely recognised as sentient beings, production is still being quantified as biomass rather than number of individuals (in contrast to farmed mammals and birds). Here, we estimate the global number of farmed finfishes slaughtered using FAO aquaculture production tonnages (1990–2019 data) and estimates of individual weight at killing (determined from internet searches at species and country level where possible). We relate these numbers to knowledge on humane slaughter, animal welfare law, and certification schemes. Since 1990, farmed finfish numbers killed annually for food have increased nine-fold, to 124 billion (1.24 × 1011, range 78–171 billion) in 2019. This figure does not represent the total number farmed (due to mortalities during rearing and non-food production) and is expected to increase as aquaculture expands. Our estimates indicate that farmed finfishes now outnumber the 80 billion farmed birds and mammals killed globally each year for food. The majority are produced in Asia. Inhumane slaughter practices cause suffering for most farmed finfishes. Most, 70–72%, have no legal welfare protection, and less than 1% have any fish-specific legal protection, at slaughter. The main global certification schemes in 2013–2015 accounted for 2% of slaughtered farmed finfishes. Fishes for which species-specific parameters for automated humane stunning are published comprise 20–24%. As the dominant taxa of farmed vertebrates, finfishes would benefit from better welfare if species-specific humane slaughter was defined and incorporated into laws and certification schemes.
Fish parasitological research associated with fisheries and aquaculture has expanded remarkably over the past century. The application of parasites as biological tags has been one of the fields in which fish parasitology has generated new insight into fish migration and stock assessments worldwide. It is a well-established discipline whose methodological issues are regularly reviewed and updated. Therefore, no concepts or case-studies will be repeated here; instead, we summarize some of the main recent findings and achievements of this methodology. These include the extension of its use in hosts other than bony fishes; the improvements in the selection of parasite tags; the recognition of the host traits affecting the use of parasite tags; and the increasingly recognized need for integrative, multidisciplinary studies combining parasites with classical methods and modern techniques, such as otolith microchemistry and genetics. Archaeological evidence points to the existence of parasitic problems associated with aquaculture activities more than a thousand years ago. However, the main surge of research within aquaculture parasitology occurred with the impressive development of aquaculture over the past century. Protozoan and metazoan parasites, causing disease in domesticated fish in confined environments, have attracted the interest of parasitologists and, due to their economic importance, funding was made available for basic and applied research. This has resulted in a profusion of basic knowledge about parasite biology, physiology, parasite–host interactions, life cycles and biochemistry. Due to the need for effective control methods, various solutions targeting host–parasite interactions (immune responses and host finding), genetics and pharmacological aspects have been in focus.
This study aimed to evaluate the ploidy and survival of larvae resulting from crosses between tetraploid females and diploid males of yellowtail tetra Astyanax altiparanae, both females (three diploids and three tetraploids) and males (n = 3 diploids). Breeders were subjected to hormonal induction with pituitary gland extract from common carp fish (Cyprinus carpio). Females received two doses at concentrations of 0.3 and 3.0 mg/kg −1 body weight and at intervals of 6 h. Males were induced with a single dose of 3.0 mg/kg −1 applied simultaneously with the second dose in females. Oocytes from each diploid and tetraploid female were fertilized with semen from the same male, resulting in two crosses: cross 1 (diploid male and diploid female) and cross 2 (diploid male and tetraploid female). The procedures were performed with separate females (diploid and tetraploid) and diploid males for each repetition (n = 3). For ploidy determination, 60 larvae from each treatment were analyzed using flow cytometry and cytogenetic analyses. As expected, flow cytometry analysis showed that progenies from crosses 1 and 2 presented diploid and triploid individuals, respectively, with a 100% success rate. The same results were confirmed in the cytogenetic analysis, in which the larvae resulting from cross 1 had 50 metaphase chromosomes and those from cross 2 had 75 chromosomes. The oocytes have a slightly ovoid shape at the time of extrusion. Diploid oocytes had a size of 559 ± 20.62 μm and tetraploid of 1025.33 ± 30.91 μm. Statistical differences were observed between eggs from crosses 1 and 2 (P = 0.0130). No significant differences between treatments were observed for survival at the 2-cell stage (P = 0.6174), blastula (P = 0.9717), gastrula (P = 0.5301), somite (P = 0.3811), and hatching (P = 0.0984) stages. In conclusion, our results showed that tetraploid females of the yellowtail tetra A. altiparanae are fertile, present viable gametes after stripping and fertilization using the ‘dry method’, and may be used for mass production of triploids. This is the first report of these procedures within neotropical characins, and which can be applied in other related species of economic importance.
Atlantic salmon (Salmo salar) are an economically and ecologically important fish species that interact with humans during farming, fishing and research operations. Routine handling in nets exposes fish to mesh and causes scale loss. To promote welfare and experimental refinement, a study was performed in a controlled environment to investigate the effect of net mesh type (rubber-coated or standard knotless, both bag volumes circa 7 l; mesh size: 6 mm) and the number of fish per net (capture density) on scale loss. Up to three large adult salmon (mean weight: 900 g) or 15 small smolts (mean weight: 145 g) were briefly captured in hand-nets during routine immersed-stock movement between tanks. Scales were recovered and counted from transportation containers, to establish a simple and rapid methodology. For both size grades, scale loss was generally proportional to capture density. For large adult salmon, scale loss significantly increased with capture density when knotless mesh was used, however the increase was less marked and not statistically significant for adults handled in rubber mesh. Small smolts also demonstrated significantly reduced scale loss when handled with rubber mesh, which increased gradually with capture density. In contrast, small smolts handled in knotless mesh showed greater scale loss as capture density increased. An overall reduction in scale loss with increased capture density was not shown, although the biomass loading per net used in this study were intentionally low (< 3.5 kg). This method suggests a low-tech and rapid approach to quantitatively compare net types and husbandry techniques and suggests a fundamental but simple improvement to salmonid handling in recreational and commercial operations. However, any correlation to conventional stress assays or behavioural observations remains to be established.