To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Abdominal aortic aneurysm (AAA) refers to aortic dilatations of > 3 cm. True AAA is a localized dilatation of the aorta caused by weakening of the aorta wall involving all three layers (intima, media and adventitia). False aneurysms or pseudoaneurysms typically occur at sites of vessel injury that allow blood to leak out from the arterial lumen while remaining enclosed by adventitia or surrounding soft tissue.
The study aimed to compare the dosimetric performance of Acuros® XB (AXB) and anisotropic analytical algorithm (AAA) for lung SBRT plans using Monte Carlo (MC) simulations.
Methods:
We compared the dose calculation algorithms AAA and either of the dose reporting modes of AXB (dose to medium (AXB-Dm) or dose to water (AXB-Dw)) algorithms implemented in Eclipse® (Varian Medical Systems, Palo Alto, CA) Treatment planning system (TPS) with MC. PRIMO code was used for the MC simulations. The TPS-calculated dose profiles obtained with a multi-slab heterogeneity phantom were compared to MC. A lung phantom with a tumour was used to validate TPS algorithms using different beam delivery techniques. 2D gamma values obtained from Gafchromic film measurements in the tumour isocentre plane were compared with TPS algorithms and MC. Ten VMAT SBRT plans generated in TPS with each algorithm were recalculated with a PRIMO MC system for identical beam parameters for the clinical plan validation. A dose–volume histogram (DVH) based plan comparison and a 3D global gamma analysis were performed.
Results:
AXB demonstrated better agreement with MC and film measurements in the lung phantom validation, with good agreement in PDD, profiles and gamma analysis. AAA showed an overestimated PDD, a significant difference in dose profiles and a lower gamma pass rate near the field borders. With AAA, there was a dose overestimation at the periphery of the tumour. For clinical plan validation, AXB demonstrated higher agreement with MC than AAA.
Conclusions:
AXB provided better agreement with MC than AAA in the phantom and clinical plan evaluations.
A comparison of anisotropic analytical algorithm (AAA) and Acuros XB (AXB) dose calculation algorithms with Electron Gamma Shower (EGSnrc) Monte Carlo (MC) for modelling lung and bone heterogeneities encountered during enhanced dynamic wedged (EDWs) radiotherapy dose deliveries was carried out.
Materials and methods
In three heterogenous slab phantoms: water–bone, lung–bone and bone–lung, wedged percentage depth doses with EGSnrc, AAA and AXB algorithms for 6 MV photons for various field sizes (5×5, 10×10 and 20×20 cm2) and EDW angles (15°, 30°, 45° and 60°) have been scored.
Results
For all the scenarios, AAA and AXB results were within ±1% of the MC in the pre-inhomogeneity region. For water–bone AAA and AXB deviated by 6 and 1%, respectively. For lung–bone an underestimation in lung (AAA: 5%, AXB: 2%) and overestimation in bone was observed (AAA: 13%, AXB: 4%). For bone–lung phantom overestimation in bone (AAA: 7%, AXB: 1%), a lung underdosage (AAA: 8%, AXB: 5%) was found. Post bone up to 12% difference in the AAA and MC results was observed as opposed to 6% in case of AXB.
Conclusion
This study demonstrated the limitation of the AAA (in certain scenarios) and accuracy of AXB for dose estimation inside and around lung and bone inhomogeneities. The dose perturbation effects were found to be slightly dependent on the field size with no obvious EDW dependence.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.