To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motivated by classical Alexander invariants of affine hypersurface complements, we endow certain finite dimensional quotients of the homology of abelian covers of complex algebraic varieties with a canonical and functorial mixed Hodge structure (MHS). More precisely, we focus on covers which arise algebraically in the following way: if U is a smooth connected complex algebraic variety and G is a complex semiabelian variety, the pullback of the exponential map by an algebraic morphism $f:U\to G$ yields a covering space $\pi :U^f\to U$ whose group of deck transformations is $\pi _1(G)$. The new MHSs are compatible with Deligne’s MHS on the homology of U through the covering map $\pi $ and satisfy a direct sum decomposition as MHSs into generalized eigenspaces by the action of deck transformations. This provides a vast generalization of the previous results regarding univariable Alexander modules by Geske, Maxim, Wang and the authors in [16, 17]. Lastly, we reduce the problem of whether the first Betti number of the Milnor fiber of a central hyperplane arrangement complement is combinatorial to a question about the Hodge filtration of certain MHSs defined in this paper, providing evidence that the new structures contain interesting information.
We develop a sheaf cohomology theory of algebraic varieties over an algebraically closed nontrivially valued nonarchimedean field K based on Hrushovski-Loeser’s stable completion. In parallel, we develop a sheaf cohomology of definable subsets in o-minimal expansions of the tropical semi-group $\Gamma _{\infty }$, where $\Gamma $ denotes the value group of K. For quasi-projective varieties, both cohomologies are strongly related by a deformation retraction of the stable completion homeomorphic to a definable subset of $\Gamma _{\infty }$. In both contexts, we show that the corresponding cohomology theory satisfies the Eilenberg-Steenrod axioms, finiteness and invariance, and we provide natural bounds of cohomological dimension in each case. As an application, we show that there are finitely many isomorphism types of cohomology groups in definable families. Moreover, due to the strong relation between the stable completion of an algebraic variety and its analytification in the sense of V. Berkovich, we recover and extend results on the singular cohomology of the analytification of algebraic varieties concerning finiteness and invariance.
We give a geometric interpretation of sheaf cohomology for higher degrees $n\geq 1$ in terms of torsors on the member of degree $d=n-1$ in hypercoverings of type $r=n-2$, endowed with an additional datum, the so-called rigidification. This generalizes the fact that cohomology in degree one is the group of isomorphism classes of torsors, where the rigidification becomes vacuous, and that cohomology in degree two can be expressed in terms of bundle gerbes, where the rigidification becomes an associativity constraint.
Let $X$ be a topological space. We consider certain generalized configuration spaces of points on $X$, obtained from the cartesian product $X^{n}$ by removing some intersections of diagonals. We give a systematic framework for studying the cohomology of such spaces using what we call ‘twisted commutative dg algebra models’ for the cochains on $X$. Suppose that $X$ is a ‘nice’ topological space, $R$ is any commutative ring, $H_{c}^{\bullet }(X,R)\rightarrow H^{\bullet }(X,R)$ is the zero map, and that $H_{c}^{\bullet }(X,R)$ is a projective $R$-module. We prove that the compact support cohomology of any generalized configuration space of points on $X$ depends only on the graded $R$-module $H_{c}^{\bullet }(X,R)$. This generalizes a theorem of Arabia.
Let M be a Hamiltonian K-space with proper moment map $\mu$. The symplectic quotient $X=\mu^{-1}(0)/K$ is a singular stratified space with a symplectic structure on the strata. In this paper we generalise the Kirwan map, which maps the K equivariant cohomology of $\mu^{-1}(0)$ to the middle perversity intersection cohomology of X, to this symplectic setting.
The key technical results which allow us to do this are Meinrenken's and Sjamaar's partial desingularisation of singular symplectic quotients and a decomposition theorem, proved in Section 2 of this paper, exhibiting the intersection cohomology of a ‘symplectic blowup’ of the singular quotient X along a maximal depth stratum as a direct sum of terms including the intersection cohomology of X.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.