To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the universal lifting spaces of local Galois representations valued in arbitrary reductive group schemes when $\ell \neq p$. In particular, under certain technical conditions applicable to any root datum, we construct a canonical smooth component in such spaces, generalizing the minimally ramified deformation condition previously studied for classical groups. Our methods involve extending the notion of isotypic decomposition for a $\operatorname {\mathrm {GL}}_n$-valued representation to general reductive group schemes. To deal with certain scheme-theoretic issues coming from this notion, we are led to a detailed study of certain families of disconnected reductive groups, which we call weakly reductive group schemes. Our work can be used to produce geometric lifts for global Galois representations, and we illustrate this for $\mathrm {G}_2$-valued representations.
Let K be a perfect field of characteristic p > 0; A1 := K〈x, ∂|∂x−x∂=1〉 be the first Weyl algebra; and Z:=K[X:=xp, Y:=∂p] be its centre. It is proved that (i) the restriction map res : AutK(A1)→ AutK(Z), σ ↦ σ|Z is a monomorphism with im(res) = Γ := {τ ∈ AutK(Z)|(τ)=1}, where (τ) is the Jacobian of τ, (Note that AutK(Z)=K* ⋉ Γ, and if K is not perfect then im(res) ≠ Γ.); (ii) the bijection res : AutK(A1) → Γ is a monomorphism of infinite dimensional algebraic groups which is not an isomorphism (even if K is algebraically closed); (iii) an explicit formula for res−1 is found via differential operators (Z) on Z and negative powers of the Fronenius map F. Proofs are based on the following (non-obvious) equality proved in the paper:
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.