To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A variety is finitely universal if its lattice of subvarieties contains an isomorphic copy of every finite lattice. We show that the 6-element Brandt monoid generates a finitely universal variety of monoids and, by the previous results, it is the smallest generator for a monoid variety with this property. It is also deduced that the join of two Cross varieties of monoids can be finitely universal. In particular, we exhibit a finitely universal variety of monoids with uncountably many subvarieties which is the join of two Cross varieties of monoids whose lattices of subvarieties are the 6-element and the 7-element chains, respectively.
This article provides an algebraic study of the propositional system $\mathtt {InqB}$ of inquisitive logic. We also investigate the wider class of $\mathtt {DNA}$-logics, which are negative variants of intermediate logics, and the corresponding algebraic structures, $\mathtt {DNA}$-varieties. We prove that the lattice of $\mathtt {DNA}$-logics is dually isomorphic to the lattice of $\mathtt {DNA}$-varieties. We characterise maximal and minimal intermediate logics with the same negative variant, and we prove a suitable version of Birkhoff’s classic variety theorems. We also introduce locally finite $\mathtt {DNA}$-varieties and show that these varieties are axiomatised by the analogues of Jankov formulas. Finally, we prove that the lattice of extensions of $\mathtt {InqB}$ is dually isomorphic to the ordinal $\omega +1$ and give an axiomatisation of these logics via Jankov $\mathtt {DNA}$-formulas. This shows that these extensions coincide with the so-called inquisitive hierarchy of [9].1
All known structural extensions of the substructural logic $\textbf{FL}_{\textbf{e}}$, the Full Lambek calculus with exchange/commutativity (corresponding to subvarieties of commutative residuated lattices axiomatized by $\{\vee , \cdot , 1\}$-equations), have decidable theoremhood; in particular all the ones defined by knotted axioms enjoy strong decidability properties (such as the finite embeddability property). We provide infinitely many such extensions that have undecidable theoremhood, by encoding machines with undecidable halting problem. An even bigger class of extensions is shown to have undecidable deducibility problem (the corresponding varieties of residuated lattices have undecidable word problem); actually with very few exceptions, such as the knotted axioms and the other prespinal axioms, we prove that undecidability is ubiquitous. Known undecidability results for non-commutative extensions use an encoding that fails in the presence of commutativity, so and-branching counter machines are employed. Even these machines provide encodings that fail to capture proper extensions of commutativity, therefore we introduce a new variant that works on an exponential scale. The correctness of the encoding is established by employing the theory of residuated frames.
A variety is said to be a Rees–Sushkevich variety if it is contained in a periodic variety generated by 0-simple semigroups. Recently, all combinatorial Rees–Sushkevich varieties have been shown to be finitely based. The present paper continues the investigation of these varieties by describing those that are Cross, finitely generated, or small. It is shown that within the lattice of combinatorial Rees–Sushkevich varieties, the set ℱ of finitely generated varieties constitutes an incomplete sublattice and the set 𝒮 of small varieties constitutes a strict incomplete sublattice of ℱ. Consequently, a combinatorial Rees–Sushkevich variety is small if and only if it is Cross. An algorithm is also presented that decides if an arbitrarily given finite set Σ of identities defines, within the largest combinatorial Rees–Sushkevich variety, a subvariety that is finitely generated or small. This algorithm has complexity 𝒪(nk) where n is the number of identities in Σ and k is the length of the longest word in Σ.
Kublanovsky has shown that if a subvariety V of the variety RSn generated by completely 0-simple semigroups over groups of exponent n is itself generated by completely 0-simple semigroups, then it must satisfy one of three conditions: (i) A2 ∈ V; (ii) (iii) B2∈V but The conditions (i) and (ii) are also sufficient conditions. In this note, we complete Kublanovsky’s programme by refining condition (iii) to obtain a complete set of conditions that are both necessary and sufficient.
In this paper, the variety of three-valued closure algebras, that is, closure algebras with the property that the open elements from a three-valued Heyting algebra, is investigated. Particularly, the structure of the finitely generated free objects in this variety is determined.
We consider certain pseudovarieties K of lattices which are closed under the doubling of convex sets. For each such K, given an arbitrary finite lattice 𝓛, we describe the covers of the variety V(𝓛) of the form V(𝓛, K) with K a subdirectly irreducible lattice in K.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.