Hostname: page-component-54dcc4c588-trf7k Total loading time: 0 Render date: 2025-10-02T04:27:33.259Z Has data issue: false hasContentIssue false

Probabilistic operators for non-attacking tableaux and a compact formula for the symmetric Macdonald polynomials

Published online by Cambridge University Press:  15 September 2025

Olya Mandelshtam*
Affiliation:
Department of Combinatorics and Optimization, University of Waterloo , 200 University Ave W, Waterloo, ON N2L 4P7, Canada

Abstract

We prove a new tableaux formula for the symmetric Macdonald polynomials $P_{\lambda }(X;q,t)$ that has considerably fewer terms and simpler weights than previously existing formulas. Our formula is a sum over certain sorted non-attacking tableaux, weighted by the queue inversion statistic $\operatorname {\mathrm {\texttt {quinv}}}$. The $\operatorname {\mathrm {\texttt {quinv}}}$ statistic originates from a formula for the modified Macdonald polynomials $\widetilde {H}_{\lambda }(X;q,t)$ due to Ayyer, Martin, and the author (2022), and is naturally related to the dynamics of the asymmetric simple exclusion process (ASEP) on a circle.

We prove our results by introducing probabilistic operators that act on non-attacking tableaux to generate a set of tableaux whose weighted sum equals $P_{\lambda }(X;q,t)$. These operators are a modification of the inversion flip operators of Loehr and Niese (2012), which yield an involution on tableaux that preserves the major index statistic but fails to preserve the non-attacking condition. Our tableaux are in bijection with the multiline queues introduced by Martin (2020), allowing us to derive an alternative multiline queue formula for $P_{\lambda }(X;q,t)$. Finally, our formula recovers an alternative formula for the Jack polynomials $J_{\lambda }(X;\alpha )$ due to Knop and Sahi (1996) using the same queue inversion statistic.

Information

Type
Discrete Mathematics
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

1 Introduction

Let $X=\{x_1,x_2,\cdots \}$ be an infinite set of indeterminates, and for $n>0$ , let $X_n=\{x_1,\ldots ,x_n\}$ denote the truncation to the first n variables. The symmetric Macdonald polynomials $P_{\lambda }(X;q,t)$ , introduced by Macdonald [Reference Macdonald17], form a family of multivariate orthogonal polynomials in X, indexed by partitions, with coefficients that are rational functions of q and t. The modified Macdonald polynomials $\widetilde {H}_{\lambda }(X;q,t)$ were introduced by Garcia and Haiman [Reference Garsia and Haiman8] as a transformed version of the polynomials $P_{\lambda }$ with coefficients in $\mathbb {N}[q,t]$ . The exploration of combinatorial formulas for the $P_{\lambda }$ ’s, the $\widetilde {H}_{\lambda }$ ’s, and associated functions has been an active area of study since their inception and has led to various formulas for these polynomials through a variety of combinatorial objects. Most famously, in 2004, an elegant tableaux formula for $\widetilde {H}_{\lambda }$ in terms of a certain inversion statistic $\operatorname {\mathrm {\texttt {inv}}}$ , was conjectured by Haglund, and subsequently proved by Haglund, Haiman, and Loehr [Reference Haglund, Haiman and Loehr10]. This has come to be known as the HHL formula:

(1.1) $$ \begin{align} \widetilde{H}_{\lambda}(X;q,t)=\sum_{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow \mathbb{Z}^+}x^{\sigma}q^{{{\texttt{maj}}}(\sigma)}t^{{{\texttt{inv}}}(\sigma)}. \end{align} $$

Using a technique called superization, (1.1) leads to a formula (2.3) for $P_{\lambda }$ with the (co)inversion statistic on certain non-attacking fillings. However, this formula has two drawbacks: it has a cumbersome prefactor, and many terms in the sum collapse to a single term in the polynomial, making the computation highly inefficient when $\lambda $ is not a strict partition.

Recent studies exploring the role of Macdonald polynomials in statistical mechanics models have led to several new combinatorial formulas. In [Reference Cantini, de Gier and Wheeler4], motivated by connections with the asymmetric simple exclusion process (ASEP), Cantini, de Gier, and Wheeler found that

$$\begin{align*}P_{\lambda}(X_n;q,t)=\sum_{\alpha} f_{\alpha}(X_n;q,t), \end{align*}$$

where the sum is over all $\alpha $ ’s of length n that sort to $\lambda $ , and the $f_{\alpha }$ ’s are known as ASEP polynomials. These polynomials specialize to the stationary probabilities of the ASEP, with $P_{\lambda }(X_n;q,t)$ reducing to the partition function of the ASEP of type $\lambda $ on n sites when $x_1=\cdots =x_n=q=1$ . In [Reference Corteel, Mandelshtam and Williams6], it was shown by Corteel, Williams, and the author that the functions $f_{\alpha }$ coincide with certain permuted basement Macdonald polynomials studied in [Reference Alexandersson1, Reference Ferreira7] that generalize the nonsymmetric Macdonald polynomials. Building upon Martin’s multiline queue formula for computing the stationary probabilities of the ASEP [Reference Martin20], [Reference Corteel, Mandelshtam and Williams6] described a related formula for these polynomials in terms of (slightly modified) multiline queues and a queue inversion statistic. This led to the first “efficient” formula for $P_{\lambda }(X;q,t)$ using statistics with a probabilistic interpretation derived from the ASEP dynamics. However, multiline queues cannot be naturally represented as tableaux in a way that preserves both their statistics and their direct connection to modified Macdonald polynomials [Reference Corteel, Mandelshtam and Williams6, Section 5].

On the other hand, expressing $P_{\lambda }$ as a sum over certain nonsymmetric Macdonald polynomials yielded an efficient tableaux formula in terms of the generalized HHL statistics defined in [Reference Haglund, Haiman and Loehr11] for composition shapes. However, those generalized HHL statistics do not naturally correspond to multiline queue statistics, thereby losing the explicit connection with ASEP dynamics. Furthermore, it is not currently known how to use these generalized statistics to recover the plethystic relationship between $P_{\lambda }$ and $\widetilde {H}_{\lambda }$ .

The interpretation of the multiline queue statistics on tableaux inspired the authors of [Reference Corteel, Haglund, Mandelshtam, Mason and Williams5] to conjecture a new tableaux formula for $\widetilde {H}_{\lambda }$ using the queue inversion statistic $\operatorname {\mathrm {\texttt {quinv}}}$ :

(1.2) $$ \begin{align} \widetilde{H}_{\lambda}(X;q,t)=\sum_{\sigma\in{{\texttt{dg}}}(\lambda)}x^{\sigma}q^{{{\texttt{maj}}}(\sigma)}t^{{{\texttt{quinv}}}(\sigma)}. \end{align} $$

This formula was subsequently proved by Ayyer, Martin, and the author in [Reference Ayyer, Mandelshtam and Martin2]. Furthermore, these authors discovered that the modified Macdonald polynomial similarly decomposes into nonsymmetric components which specialize at $q=1$ to the stationary probabilities of the multispecies totally asymmetric zero range process (TAZRP) [Reference Ayyer, Mandelshtam and Martin3], with $\widetilde {H}_{\lambda }(X_n;q,t)$ specializing at $q=1$ to the partition function of the TAZRP of type $\lambda $ on n sites.

In this article, we prove the following compact tableaux formula for $P_{\lambda }$ in terms of the $\operatorname {\mathrm {\texttt {quinv}}}$ statistic on $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted non-attacking tableaux, which are defined in Section 2. This formula results from compressing the formula (2.12) obtained in [Reference Mandelshtam, Orr and Wen18], and was conjectured therein.

Theorem 1.1. The symmetric Macdonald polynomial $P_{\lambda }(X;q,t)$ is given by

(1.3) $$ \begin{align} P_{\lambda}(X;q,t) = \sum_{\substack{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\\\sigma\,{\mathrm{quinv-non-attacking}}\\ \sigma\,{\mathrm{coquinv-sorted}}}}q^{{{\texttt{maj}}}(\sigma)}t^{{{\texttt{coquinv}}}(\sigma)}x^{\sigma}\prod_{\substack{u\in{{\texttt{dg}}}(\lambda)\\\sigma(u)\neq\sigma({\mathrm{South}}(u))}}\frac{1-t}{1-q^{{{\texttt{leg}}}(u)+1}t^{{\mathrm{\widehat{\texttt{arm}}}}(u)+1}}. \end{align} $$

We show that the $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted tableaux with the statistic $\operatorname {\mathrm {\texttt {quinv}}}$ in (1.3) are in bijection with the multiline queues of Martin [Reference Martin20]. As a consequence of this bijection, we obtain an alternative multiline queue formula for $P_{\lambda }$ through Martin’s multiline queues. Moreover, our formula can be split into nonsymmetric components which specialize at $x_1=\cdots =x_n=q=1$ to probabilities of the ASEP, and which we conjecture are the ASEP polynomials.

Our objective in this paper is to show that the $\operatorname {\mathrm {\texttt {quinv}}}$ and $\widehat {\texttt {arm}}$ statistics in (1.3) are natural statistics for a tableaux formula for $P_{\lambda }$ , as they exhibit the relationship of the classical and modified Macdonald polynomials to the ASEP and TAZRP, respectively. Moreover, the two formulas are directly connected through a combinatorial interpretation of the plethystic substitution that transforms $P_{\lambda }$ into $\widetilde {H}_{\lambda }$ . These relationships are shown in the diagram below.

This article is organized as follows. Section 2 contains the necessary background on formulas for $\widetilde {H}_{\lambda }(X;q,t)$ and $P_{\lambda }(X;q;t)$ in terms of the $\operatorname {\mathrm {\texttt {inv}}}$ and $\operatorname {\mathrm {\texttt {quinv}}}$ statistics from [Reference Haglund, Haiman and Loehr10, Reference Haglund, Haiman and Loehr11] and [Reference Ayyer, Mandelshtam and Martin2, Reference Mandelshtam, Orr and Wen18], respectively. In Section 3, we define the probabilistic entry-swapping operators on $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking fillings which we use to prove Theorem 1.1, with a $\operatorname {\mathrm {\texttt {coinv}}}$ analog in Section 4. In Section 5, we discuss the map to Martin’s multiline queues in Section 5, where we also conjecture a new tableaux formula for the ASEP polynomials $f_\alpha (X_n;q,t)$ . Finally, we derive an alternative formula for Jack polynomials using the $\operatorname {\mathrm {\texttt {quinv}}}$ statistic in Section 6.

2 Background

2.1 Combinatorial statistics and tableaux

A composition is a sequence $\alpha =(\alpha _1,\dots , \alpha _k)$ , of k nonnegative integers called its parts. The number of nonzero parts is given by $\ell (\alpha )$ , and $|\alpha |=\sum _i\alpha _i$ is the sum of the parts. Denote by $\operatorname {\mathrm {sort}}(\alpha )$ and $\operatorname {\mathrm {inc}}(\alpha )$ the compositions obtained by rearranging the parts of $\alpha $ in weakly decreasing and increasing order, respectively. If $\alpha $ is a weakly decreasing composition, we call it a partition. For a partition $\lambda $ , define the conjugate partition $\lambda '=(\lambda _1',\ldots ,\lambda _{\ell (\lambda )}')$ by $\lambda ^{\prime }_j=|\{i:\lambda _i\geq j\}|$ , and define $n(\lambda )=\sum _i {\lambda _i'\choose 2}$ . We may equivalently use the frequency notation to describe a partition $\lambda $ as a multiplicity vector. Let $m_i(\lambda )$ be the number of parts of size i in $\lambda $ ; then we may write $\lambda $ as $\langle 1^{m_1(\lambda )}2^{m_2(\lambda )}\ldots \rangle $ . If each part of $\lambda $ appears at most once, we call $\lambda $ a strict partition.

Example 2.1. For example, the composition $\alpha =(3,1,4,3,3,1)$ rearranges to $\operatorname {\mathrm {inc}}(\alpha )=(1,1,3,3,3,4)$ and $\lambda =\operatorname {\mathrm {sort}}(\alpha )=(4,3,3,3,1,1)$ . Then $\lambda '=(6,4,4,1)$ with $n(\lambda )=27$ , and $\lambda $ has frequency notation $\langle 1^22^03^34^1\rangle $ .

Given a partition or composition $\alpha =(\alpha _1,\dots , \alpha _n)$ , its diagram $\operatorname {\mathrm {\texttt {dg}}}(\alpha )$ is a sequence of bottom-justified columns with $\alpha _i$ cells in the i-th column. In this article we will only be considering diagrams for partitions (although the leftmost and rightmost diagrams in Figure 1 are composition diagrams). Note that in this article, $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ corresponds to the Ferrers diagram of the conjugate partition $\lambda '$ .

Figure 1 We show the diagrams of the compositions $\alpha =(2,3,4,1,3,2)$ , $\lambda (\alpha )$ , and $\operatorname {\mathrm {inc}}(\alpha )$ . The cell $u=(2,3)$ has $\operatorname {\mathrm {\texttt {leg}}}(u)$ equal to $2, 1, 0$ in each diagram, respectively.

The columns of a partition or composition diagram $\operatorname {\mathrm {\texttt {dg}}}(\alpha )$ are labeled from left to right, and the rows from bottom to top. The notation $u=(r,c)$ refers to the cell in row r and column c (opposite of the convention of Cartesian coordinates). We denote by $\operatorname {\mathrm {South}}(u)=\operatorname {\mathrm {South}}(r,c)$ the cell $(r-1,c)$ directly below u, if it exists; if $r=1$ and $\operatorname {\mathrm {South}}(u)$ doesn’t exist, we set the convention $\operatorname {\mathrm {South}}(u)=\infty $ . The leg of a cell $u=(r,j)\in \operatorname {\mathrm {\texttt {dg}}}(\alpha )$ is denoted $\operatorname {\mathrm {\texttt {leg}}}(u)=\alpha _j-r$ and is equal to the number of cells above in the same column as u. See Figure 1 for an example.

A filling $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\alpha ) \to \mathbb {Z}^+$ is an assignment of positive integers to the cells of $\operatorname {\mathrm {\texttt {dg}}}(\alpha )$ . For a cell $u\in \operatorname {\mathrm {\texttt {dg}}}(\alpha )$ , $\sigma (u)$ denotes the entry in the cell u. The content of a filling $\sigma $ is recorded as a monomial in the variables $X=x_1,x_2,\ldots $ , and is denoted by $x^{\sigma } := \prod _{u\in \operatorname {\mathrm {\texttt {dg}}}(\lambda )} x_{\sigma (u)}$ . Define the major index of a filling $\sigma $ , denoted $\operatorname {\mathrm {\texttt {maj}}}(\sigma )$ , by

$$\begin{align*}{{\texttt{maj}}}(\sigma) = \sum_{\substack{u\in {{\texttt{dg}}}(\lambda)\\\sigma(u)>\sigma({\mathrm{South}}(u))}} ({{\texttt{leg}}}(u)+1). \end{align*}$$

We shall also define two types of non-attacking fillings.

Definition 2.2. For two cells $x=(r_1,i),y=(r_2,j)\in \operatorname {\mathrm {\texttt {dg}}}(\lambda )$ with $i<j$ , we say they are $\operatorname {\mathrm {\texttt {inv}}}$ -attacking if $r_1=r_2$ or $r_2=r_1+1$ . We say x and y are $\operatorname {\mathrm {\texttt {quinv}}}$ -attacking if $r_1=r_2$ or if $i<j$ and $r_2=r_1-1$ . The configurations comparing the two definitions are shown below:

A filling of $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ is $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking if no pair of $\operatorname {\mathrm {\texttt {inv}}}$ -attacking cells contains the same entry. Similarly, a filling of $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ is $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking if no pair of $\operatorname {\mathrm {\texttt {quinv}}}$ -attacking cells contains the same entry.

Remark 2.3. For a filling of partition shape, the $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking condition is more restrictive than the $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking condition (there are more $\operatorname {\mathrm {\texttt {quinv}}}$ -attacking pairs). Thus a formula over $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking tableaux will have fewer terms than one over $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking tableaux.

2.2 Definitions of $P_{\lambda }$ , $J_{\lambda }$ , and $\widetilde {H}_{\lambda }$

For $X=x_1,x_2,\ldots $ a set of indeterminates, let $\operatorname {\mathrm {Sym}}$ be the ring of symmetric functions in X with coefficients in $\mathbb {Q}(q,t)$ . The Macdonald polynomial $P_{\lambda }(X;q,t)$ is characterized as the unique polynomial in $\operatorname {\mathrm {Sym}}$ that is orthogonal with respect to the $q,t$ -generalization of the Hall inner product, and can be written as

$$\begin{align*}P_{\lambda}(X;q,t)=m_{\lambda}(X)+\sum_{\mu< \lambda} b_{\mu,\lambda}(q,t)m_{\mu}(X), \end{align*}$$

where the usual dominance order on partitions is used: $\mu \leq \lambda $ if and only if $\mu _1+\cdots +\mu _k\leq \lambda _1+\cdots +\lambda _k$ for all $k\geq 1$ . When $P_{\lambda }(X;q,t)$ is scaled by a certain product of linear terms, one obtains the integral form $J_{\lambda }(X;q,t)$ , whose coefficients are in $\mathbb {Z}[q,t]$ . Define

(2.1) $$ \begin{align} {\mathrm{PR}}_{\lambda}(q,t)=\prod_{u\in{{\texttt{dg}}}(\lambda)}(1-q^{{{\texttt{leg}}}(u)}t^{{{\texttt{arm}}}(u)+1}),\qquad \widetilde{{\mathrm{PR}}}_{\lambda}(q,t)=\prod_{u\in\overline{{{\texttt{dg}}}}(\lambda)}(1-q^{{{\texttt{leg}}}(u)+1}t^{{{\texttt{arm}}}(u)+1}) \end{align} $$

where $\overline {\operatorname {\mathrm {\texttt {dg}}}}(\lambda )$ is the set of cells in $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ not in the bottom row. The integral form is then defined as $J_{\lambda }(X;q,t)=\operatorname {\mathrm {PR}}_{\lambda }(q,t) P_{\lambda }(X;q,t)$ .

In [Reference Garsia and Haiman8], Garcia and Haiman defined the modified Macdonald polynomials by plethystic substitution into $J_{\lambda }(X;q,t)$ :

(2.2) $$ \begin{align} \widetilde{H}_{\lambda}(X;q,t)=t^{n(\lambda)}J_{\lambda}\Big[\frac{X}{1-t^{-1}};q,t^{-1}\Big]. \end{align} $$

We postpone the definition of plethystic substitution until Section 2.4, where the plethystic relationship in equation (2.2) is interpreted combinatorially through superization. This interpretation was used in [Reference Haglund, Haiman and Loehr10] to derive the following formula for $P_{\lambda }$ in terms of $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking fillings:

(2.3) $$ \begin{align} P_{\lambda}(X;q,t)=\frac{\widetilde{{\mathrm{PR}}}_{\lambda}(q,t)}{{\mathrm{PR}}_{\lambda}(q,t)}\hspace{-0.2in}\sum_{\substack{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\\\sigma\,{\mathrm{inv-non-attacking}}}}x^{\sigma}q^{{{\texttt{maj}}}(\sigma)}t^{{{\texttt{coinv}}}(\sigma)}\prod_{\substack{u\in{{\texttt{dg}}}(\lambda)\\\sigma(u)\neq\sigma({\mathrm{South}}(u))}}\frac{1-t}{1-q^{{{\texttt{leg}}}(u)+1}t^{{{\texttt{arm}}}(u)+1}}. \end{align} $$

For a discussion of the prefactor $\widetilde {\operatorname {\mathrm {PR}}}_{\lambda }(q,t)/\operatorname {\mathrm {PR}}_{\lambda }(q,t)$ , see [Reference Corteel, Haglund, Mandelshtam, Mason and Williams5, Section 4].

Although the statistics $\operatorname {\mathrm {\texttt {maj}}}$ and $\operatorname {\mathrm {\texttt {coinv}}}$ appearing in the above formula are well behaved, the formula itself is unsatisfying because many of the tableaux appearing in the sum compress to a single term in the polynomial, making the computation quite inefficient for certain $\lambda $ ’s. For example, when $\lambda =(1^k)$ , $P_{\lambda }=m_{1^k}$ , and the coefficient $[x^{\lambda }]P_{\lambda }(X;q,t)=1$ , whereas in the formula above, there are $k!$ tableaux contributing to the coefficient of $x^{\lambda }$ .

The multiline queue formula of [Reference Corteel, Mandelshtam and Williams6] was a significant improvement over (2.3) in the sense of having fewer terms; however, translating it into the tableaux setting resulted in having to define complicated statistics, making such a tableaux formula impractical. On the other hand, in [Reference Corteel, Haglund, Mandelshtam, Mason and Williams5, Equation 4.10], a tableaux formula was given in terms of sorted non-attacking fillings of $\operatorname {\mathrm {\texttt {dg}}}(\operatorname {\mathrm {inc}}(\lambda ))$ and the generalized statistics $\operatorname {\mathrm {\texttt {coinv}}}'$ and $\operatorname {\mathrm {\texttt {arm}}}'$ from [Reference Haglund, Haiman and Loehr10]. This formula was based on the fact that $P_{\lambda }$ can be written as a sum over certain permuted basement Macdonald polynomials. However, the statistics $\operatorname {\mathrm {\texttt {coinv}}}'$ and $\operatorname {\mathrm {\texttt {arm}}}'$ are more complicated than the statistics $\operatorname {\mathrm {\texttt {arm}}}$ and $\operatorname {\mathrm {\texttt {inv}}}$ in (2.3), and don’t correspond directly to statistics on multiline queues.

2.3 Two formulas for $\widetilde {H}_{\lambda }$

In this section, we describe the formulas (1.1) due to [Reference Haglund, Haiman and Loehr10] and (1.2) due to [Reference Ayyer, Mandelshtam and Martin2] for $\widetilde {H}_{\lambda }(X;q,t)$ .

Define the function $\mathcal {Q}:\mathbb {N}^3\rightarrow \{0,1\}$ by $\mathcal {Q}(a,b,c)=0$ if the entries $a,b,c$ satisfy one of the following inequalities and $\mathcal {Q}(a,b,c)=1$ otherwise:

(2.4) $$ \begin{align} a\leq b<c\quad\text{or}\quad c<a\leq b \quad\text{or}\quad b<c<a. \end{align} $$

2.3.1 HHL statistics

For a cell $u=(r,k)\in \operatorname {\mathrm {\texttt {dg}}}(\lambda )$ , its arm denoted $\operatorname {\mathrm {Arm}}(u)$ is the set of cells in its row to its right, and $\operatorname {\mathrm {\texttt {arm}}}(u)=|\operatorname {\mathrm {Arm}}(u)|=\lambda ^{\prime }_r-k$ . Below, the shaded cells correspond to $\operatorname {\mathrm {Arm}}(u)$ :

A $\Gamma $ -triple is a triple of cells $x=(r,i), y=(r-1,i), z=(r,j)$ where $j>i$ , so that $z\in \operatorname {\mathrm {Arm}}(x)$ . When $r=1$ , it is called a degenerate $\Gamma $ -triple. A $\Gamma $ -triple is an inversion in a filling $\sigma $ of $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ if the entries $a=\sigma (x)$ , $b=\sigma (y)$ , and $c=\sigma (z)$ in the configuration below are cyclically increasing when read counterclockwise. Ties are broken with respect to top-to-bottom, left-to-right reading order on the entries. By convention, $\sigma (y)=\infty $ in a degenerate triple:

Equivalently, a $\Gamma $ -triple with contents $a,b,c$ in the configuration above is an inversion if $\mathcal {Q}(a,b,c)=0$ , and a coinversion if $\mathcal {Q}(a,b,c)=1$ . The total number of inversion triples in $\sigma $ is denoted by $\operatorname {\mathrm {\texttt {inv}}}(\sigma )$ , and the number of coinversion triples is $\operatorname {\mathrm {\texttt {coinv}}}(\sigma )=n(\lambda )-\operatorname {\mathrm {\texttt {inv}}}(\sigma )$ .

2.3.2 Queue statistics

For a cell $u=(r,k)\in \operatorname {\mathrm {\texttt {dg}}}(\lambda )$ , its arm $\operatorname {\mathrm {\widehat {Arm}}}(u)$ is the set of cells in the row below strictly to its right, and $\operatorname {\mathrm {\widehat {\texttt {arm}}}}(u)=|\operatorname {\mathrm {\widehat {Arm}}}(u)|=\lambda ^{\prime }_{r-1}-k$ . An L-triple is a triple of cells $x=(r,i)$ , $y=(r-1,i)$ , $z=(r-1,j)$ where $j>i$ , so that $z\in \operatorname {\mathrm {\widehat {Arm}}}(x)$ . Below, the shaded cells correspond to $\operatorname {\mathrm {\widehat {Arm}}}(u)$ :

When $r=\lambda _k$ , it is called a degenerate L-triple. An L-triple is a queue inversion (or $\operatorname {\mathrm {\texttt {quinv}}}$ ) in a filling $\sigma $ if the entries $a=\sigma (x)$ , $b=\sigma (y)$ , $c=\sigma (z)$ in the configuration below are cyclically increasing when read counterclockwise. Ties are broken with respect to top-to-bottom, right-to-left reading order on the entries. By convention $\sigma (x)=0$ in a degenerate triple:

Equivalently, an L-triple with contents $a,b,c$ in the configuration above is a $\operatorname {\mathrm {\texttt {quinv}}}$ triple if $\mathcal {Q}(a,b,c)=0$ , and if $\mathcal {Q}(a,b,c)=1$ we call it a $\operatorname {\mathrm {\texttt {coquinv}}}$ triple. The total number of $\operatorname {\mathrm {\texttt {quinv}}}$ triples in $\sigma $ is denoted by $\operatorname {\mathrm {\texttt {quinv}}}(\sigma )$ , and the number of $\operatorname {\mathrm {\texttt {coquinv}}}$ triples is $\operatorname {\mathrm {\texttt {coquinv}}}(\sigma )=n(\lambda )-\operatorname {\mathrm {\texttt {quinv}}}(\sigma )$ .

With these statistics, $\widetilde {H}_{\lambda }(X;q,t)$ can be written as a sum over fillings $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ either in terms of the $\operatorname {\mathrm {\texttt {inv}}}$ statistic in (1.1) or in terms of the $\operatorname {\mathrm {\texttt {quinv}}}$ statistic in (1.2).

Remark 2.4. Recently, an interesting bijection relating the statistics $\operatorname {\mathrm {\texttt {inv}}}$ and $\operatorname {\mathrm {\texttt {quinv}}}$ was found in [Reference Jin and Lin13].

Example 2.5. In the tableau $\sigma $ below, the cell $u=(2,2)$ has $\operatorname {\mathrm {\texttt {leg}}}(u)=1$ , $\operatorname {\mathrm {\texttt {arm}}}(u)=3$ and $\operatorname {\mathrm {\widehat {\texttt {arm}}}}(u)=7$ . $\operatorname {\mathrm {\texttt {maj}}}(\sigma )=5$ , $\operatorname {\mathrm {\texttt {inv}}}(\sigma )=6$ , and $\operatorname {\mathrm {\texttt {quinv}}}(\sigma )=14$ . Thus this filling contributes $x_1^5x_2^3x_3^6x_4x_5q^5t^{6}$ to (1.1) and $x_1^5x_2^3x_3^6x_4x_5q^5t^{14}$ to (1.2).

2.4 Formulas for $P_{\lambda }$ and $J_{\lambda }$ from $\widetilde {H}_{\lambda }$ via superization

We recall briefly the definition of plethystic substitution (see [Reference Haglund9, Chapter 1] for a full treatment). Let $X=x_1,x_2,\ldots $ and $Y=y_1,y_2,\ldots $ be two alphabets. For a formal power series or polynomial $A\in \operatorname {\mathrm {Sym}}$ in the indeterminates X, define the plethystic substitution of A into the power sum symmetric function $p_k=\sum _j x_j^k$ by $p_k[A]=A(x_1^k,x_2^k,\ldots )$ . For a symmetric function f, extend the definition of plethystic substitution by expanding f in the power sum basis and substituting $p_k[A]$ for $p_k(A)$ to obtain $f[A]$ . By convention, when X appears inside brackets, it is treated as a formal power series as $f[X]=f[x_1+x_2+\cdots ]$ , so that $f[X]=f(X)$ and $f[X+Y]=f(X,Y)$ . We will also use the notation $f[\varepsilon X]=f(-X)=f(-x_1,-x_2,\ldots )$ .

We recall the classical notion of superization of a symmetric function $f\in \operatorname {\mathrm {Sym}}$ (see, for instance, [Reference Haglund, Haiman, Loehr, Remmel and Ulyanov12] for details). Define the super-alphabet $\mathcal {A}=\mathbb {Z}^+\cup \mathbb {Z}^-=\{1,\bar 1,2,\bar 2,\ldots \}$ , where the elements of the usual alphabet $\mathbb {Z}^+=\{1,2,\ldots \}$ are referred to as the “positive” letters, and those of $\mathbb {Z}^-=\{\bar 1,\bar 2,\ldots \}$ as the “negative” letters. The total ordering on $\mathcal {A}\cup \{0,\infty \}$ is chosen to be:

$$\begin{align*}0<1<\bar1<2<\bar2<\cdots<\infty. \end{align*}$$

When standardizing a word in the alphabet $\mathcal {A}$ , ties between two equal letters are broken by saying the leftmost one is smaller if they are positive and the leftmost one is larger if they are negative. To make this precise, we introduce the notation $I(a,b)$ for any $a,b\in \mathcal {A}\cup \{0,\infty \}$ to generalize the notion of a descent on $\mathcal {A}\cup \{0,\infty \}$ with respect to the total ordering above:

$$\begin{align*}I(a,b)=\begin{cases} 1,&a>b\ \text{or}\ a=b\in\mathbb{Z}^-,\\ 0,&a<b\ \text{or}\ a=b\in\mathbb{Z}^+. \end{cases} \end{align*}$$

Note in particular that if $a\neq b$ , then $I(a,b)=\delta _{a>b}$ (where $\delta _F$ is the truth function that outputs 1 if F is true and 0 otherwise). Otherwise, we have $I(a,a)=0$ and $I(\bar a,\bar a)=1$ for any $a\in \mathbb {Z}^+$ . For example, $I(1,2)=I(\bar 1,\bar 2)=I(2,\bar 2)=I(1,1)=I(1,\infty )=0$ and $I(2,1)=I(\bar 2,2)=I(\bar 2,\bar 2)=I(1,0)=1$ .

Definition 2.6. A super filling of a diagram $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ with the super alphabet $\mathcal {A}$ with a fixed total ordering is a function $\sigma : \operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathcal {A}$ . We denote by $|\sigma |$ the regular filling with the alphabet $\mathbb {Z}^+$ obtained by sending $\bar a$ in $\sigma $ to a for each $a\in \mathbb {Z}^+$ . For a super filling $\sigma $ , define $p(\sigma )$ and $m(\sigma )$ to be the numbers of positive and negative entries in $\sigma $ , respectively.

The notation $I(a,b)$ allows us to extend the definitions of the major index, $\operatorname {\mathrm {\texttt {inv}}}$ , and $\operatorname {\mathrm {\texttt {quinv}}}$ to super fillings. Let $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathcal {A}$ , and define

$$\begin{align*}{{\texttt{maj}}}(\sigma)=\sum_{\substack{u\in{{\texttt{dg}}}(\lambda)\\I(\sigma(u),\sigma({\mathrm{South}}(u))=1}} {{\texttt{leg}}}(u)+1. \end{align*}$$

For $a,b,c\in \mathcal {A}\cup \{0,\infty \}$ , we say $\mathcal {Q}(a,b,c)=0$ if and only if exactly one of the following is true:

$$\begin{align*}\{I(a,b)=1, I(c,b)=0, I(a,c)=0\}. \end{align*}$$

Note that it is impossible for all three to be true, so if more than one is true, $\mathcal {Q}(a,b,c)=1$ . When $\sigma =|\sigma |$ , this definition coincides with the inequalities in (2.4), and thus characterizes $\operatorname {\mathrm {\texttt {inv}}}(\sigma )$ and $\operatorname {\mathrm {\texttt {quinv}}}(\sigma )$ when $\sigma $ is a super filling.

Definition 2.7. Let X and Y be two alphabets. The superization of a symmetric function $f(X)$ is

$$\begin{align*}\widetilde{f}(X,Y) := f[X-\varepsilon Y].\end{align*}$$

In particular, we have

(2.5) $$ \begin{align} f[X(t-1);q,t]= f[tX-\varepsilon X;q,t]=\widetilde{f}(tX,\varepsilon X;q,t). \end{align} $$

Due to [Reference Haglund, Haiman and Loehr10, Proposition 4.3], if

$$\begin{align*}f(X;q,t)=\sum_{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow \mathbb{Z}^+}q^{{{\texttt{maj}}}(\sigma)}t^{\iota(\sigma)}x^{\sigma},\end{align*}$$

where $\iota (\sigma )$ can be either $\operatorname {\mathrm {\texttt {inv}}}(\sigma )$ or $\operatorname {\mathrm {\texttt {quinv}}}(\sigma )$ , one obtains a formula for its superization $\widetilde {f}(X,Y)=f[X-\varepsilon Y]$ as a generating function over super fillings $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathcal {A}$ :

(2.6) $$ \begin{align} \widetilde{f}(X,Y;q,t)=\sum_{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow \mathcal{A}}q^{{{\texttt{maj}}}(\sigma)}t^{\iota(\sigma)}z^{\sigma} \end{align} $$

where $z_i=x_i$ if $i\in \mathbb {Z}^+$ and $z_i=y_i$ if $i\in \mathbb {Z}^-$ .

Rearranging (2.2) for $J_{\lambda }(X;q,t)$ , we get

(2.7) $$ \begin{align} J_{\lambda}(X;q,t)&=t^{n(\lambda)}\widetilde{H}_{\lambda}[X(1-t);q,t^{-1}]=t^{n(\lambda)+n}\widetilde{H}_{\lambda}[X(t^{-1}-1);q,t^{-1}]. \end{align} $$

As detailed in [Reference Haglund, Haiman and Loehr10, Lemma 5.2] and [Reference Ayyer, Mandelshtam and Martin2, Section 3], (2.6) and (2.5) imply, respectively,

(2.8) $$ \begin{align} \widetilde{H}_{\lambda}[X(t-1);q,t] &= \sum_{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow \mathcal{A}}(-1)^{m(\sigma)}q^{{{\texttt{maj}}}(\sigma)}t^{p(\sigma)+{{\texttt{inv}}}(\sigma)}x^{|\sigma|},\end{align} $$
(2.9) $$ \begin{align} &= \sum_{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow\mathcal{A}}(-1)^{m(\sigma)}q^{{{\texttt{maj}}}(\sigma)}t^{p(\sigma)+{{\texttt{quinv}}}(\sigma)}x^{|\sigma|}. \end{align} $$

These compress to formulas for $J_{\lambda }$ in terms of $\operatorname {\mathrm {\texttt {inv}}}$ - and $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking super fillings, respectively:

(2.10) $$ \begin{align} J_{\lambda}(X;q,t) &= t^{n(\lambda)+n} \sum_{\substack{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow \mathcal{A}\\|\sigma| {\mathrm{inv-non-attacking}}}}(-1)^{m(\sigma)}q^{{{\texttt{maj}}}(\sigma)}t^{-p(\sigma)-{{\texttt{inv}}}(\sigma)}x^{|\sigma|}, \end{align} $$
(2.11) $$ \begin{align} &= t^{n(\lambda)+n} \sum_{\substack{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow \mathcal{A}\\|\sigma| {\mathrm{quinv-non-attacking}}}}(-1)^{m(\sigma)}q^{{{\texttt{maj}}}(\sigma)}t^{-p(\sigma)-{{\texttt{quinv}}}(\sigma)}x^{|\sigma|}.\end{align} $$

In [Reference Haglund, Haiman and Loehr10, Section 8], it is shown how to further compress (2.10) to obtain (2.3) by grouping together and evaluating the total contribution of all super fillings that have the same absolute value to obtain the HHL tableaux formulas in terms of $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking tableaux. In [Reference Mandelshtam, Orr and Wen18], an analogous strategy is used to compress (2.11) to obtain the following formulas in terms of $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking tableaux.

Theorem 2.8 [Reference Mandelshtam, Orr and Wen18, Theorem 5.3]

The symmetric Macdonald polynomial $P_{\lambda }(X;q,t)$ is given by

(2.12) $$ \begin{align} P_{\lambda}(X;q,t) = \frac{1}{{\mathrm{perm}}_{\lambda}(t)}\hspace{-0.2in}\sum_{\substack{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\\\sigma\,{\mathrm{quinv-non-attacking}}}}\hspace{-0.2in}q^{{{\texttt{maj}}}(\sigma)}t^{{{\texttt{coquinv}}}(\sigma)} x^{\sigma}\hspace{-0.2in} \prod_{\substack{u,~{\mathrm{South}}(u)\in{{\texttt{dg}}}(\lambda)\\\sigma(u)\neq\sigma({\mathrm{South}}(u))}}\frac{1-t}{1-q^{{{\texttt{leg}}}(u)+1}t^{{\mathrm{\widehat{\texttt{arm}}}}(u)+1}}. \end{align} $$

Remark 2.9. When $\lambda $ is a strict partition, $\operatorname {\mathrm {perm}}_{\lambda }(t)=1$ , and (2.12) coincides with Lenart’s formula for $P_{\lambda }$ in [Reference Lenart15]. It would be interesting to see if Lenart’s compression of quantum alcove walks could be extended for general partitions to map to $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted non-attacking tableaux.

Remark 2.10. In comparing (2.12) to (2.3), one notices the absence of the prefactor $\widetilde {\operatorname {\mathrm {PR}}}_{\lambda }(q,t)/\operatorname {\mathrm {PR}}_{\lambda }(q,t)$ . This comes from the fact that

(2.13) $$ \begin{align} {\mathrm{PR}}_{\lambda}(q,t)=\prod_{u\in{{\texttt{dg}}}(\lambda)}(1-q^{{{\texttt{leg}}}(u)}t^{{{\texttt{arm}}}(u)+1})={\mathrm{perm}}_{\lambda}(t)\prod_{u\in\overline{{{\texttt{dg}}}}(\lambda)}(1-q^{{{\texttt{leg}}}(u)+1}t^{{\mathrm{\widehat{\texttt{arm}}}}(u)+1}), \end{align} $$

and so all terms of the form $(1-q^{\ell }t^a)$ in the numerator are cancelled in the product $P_{\lambda }(X;q,t)=\operatorname {\mathrm {PR}}_{\lambda }(q,t)^{-1}J_{\lambda }(X;q,t)$ when the $\operatorname {\mathrm {\texttt {quinv}}}$ and $\widehat {\texttt {arm}}$ statistics are used.

As a corollary we obtain a (co)quinv formula for the integral form $J_{\lambda }(X;q,t)$ .

(2.14) $$ \begin{align} J_{\lambda}(X;q,t)=\hspace{-0.4in}\sum_{\substack{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\\\sigma\,{\mathrm{quinv-non-attacking}}}}\hspace{-0.3in}q^{{{\texttt{maj}}}(\sigma)}t^{{{\texttt{coquinv}}}(\sigma)} x^{\sigma}\hspace{-0.2in} \prod_{\substack{u\in\overline{{{\texttt{dg}}}}(\lambda)\\\sigma(u)=\sigma({\mathrm{South}}(u))}}\hspace{-0.3in}(1-q^{{{\texttt{leg}}}(u)+1}t^{{\mathrm{\widehat{\texttt{arm}}}}(u)+1})\hspace{-0.2in}\prod_{\substack{u\in{{\texttt{dg}}}(\lambda)\\\sigma(u)\neq\sigma({\mathrm{South}}(u))}}\hspace{-0.3in}(1-t). \end{align} $$

It should be noted that the first product is over cells $u\in \overline {\operatorname {\mathrm {\texttt {dg}}}}(\lambda )$ above the bottom row, while the second product is over all cells $u\in \operatorname {\mathrm {\texttt {dg}}}(\lambda )$ , accounting for all necessary factors of $(1-t)$ .

Noting the prefactor $\operatorname {\mathrm {perm}}_{\lambda }(t)^{-1}$ in the formula (2.12), in [Reference Mandelshtam, Orr and Wen18] we conjectured the compact formula (1.3), which uses $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking fillings, and thereby eliminates this prefactor. We prove this conjecture in Section 3.

Example 2.11. We compute $P_{2,2}(X;q,t)$ using Theorem 1.1 to get

$$\begin{align*}P_{(2,2)}(X;q,t) = m_{22}+\frac{(1+q)(1-t)}{1-qt}m_{211}+ \frac{(2+t+3q+q^2+3qt+2q^2t)(1-t)^2}{(1-qt)(1-qt^2)}m_{1111}. \end{align*}$$

The common factor of $\frac {(1-t)^2}{(1-qt)(1-qt^2)}$ was left out from the weights of the fillings for $m_{1111}$ .

2.5 Compact formulas for $\widetilde {H}_{\lambda }$ via inv-flip and quinv-flip operators $\tau _j$ and $\rho _j$

Definition 2.12. Let $\lambda =\langle 1^{m_1}2^{m_2}\cdots k^{m_k}\rangle $ be a partition. We define $\operatorname {\mathrm {perm}}_{\lambda }(t)$ to be the t-analog of the stabilizer of $\lambda $ in $S_{\ell (\lambda )}$ :

$$\begin{align*}{\mathrm{perm}}_{\lambda}(t):=[m_1]_t!\cdots [m_k]_t! \end{align*}$$

where $[k]_t:=1+\cdots +t^{k-1}$ and $[k]_t!:=[k]_t[k-1]_t\cdots [1]_t$ .

We generalize the above to define $\operatorname {\mathrm {perm}}(\sigma )$ where $\sigma $ is a filling of a partition shape.

Definition 2.13. Let $\sigma ^{(i)}$ be a filling of a $m\times i$ rectangular diagram (m columns of length i) such that there are k distinct columns with multiplicities $\{m_1,\ldots ,m_k\}$ , so that $m_1+\cdots +m_k=m$ . We define the statistic $\operatorname {\mathrm {perm}}(\sigma ^{(i)})$ to be the inversion generating function of a word in the letters $\langle 1^{m_1}\cdots k^{m_k}\rangle $ :

$$\begin{align*}{\mathrm{perm}}(\sigma^{(i)}) = {m \brack m_1,\ldots,m_k}_t:=\frac{[m]_t!}{[m_1]_t!\cdots[m_k]_t!}. \end{align*}$$

Then, for a filling $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ , for $1\leq i\leq \lambda _1$ , let $\sigma ^{(i)}$ be the (possibly empty) rectangular block consisting of the columns of height i of $\sigma $ (per convention, $\operatorname {\mathrm {perm}}(\emptyset )=1$ ). Define

$$\begin{align*}{\mathrm{perm}}(\sigma) = \prod_{i=1}^{\lambda_1} {\mathrm{perm}}(\sigma^{(i)}). \end{align*}$$

Described in another way, $\operatorname {\mathrm {perm}}(\sigma )$ is the t-analog of the number of distinct ways of permuting the columns of $\sigma $ within the shape $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ .

In particular, if $\sigma $ is a ( $\operatorname {\mathrm {\texttt {inv}}}$ or $\operatorname {\mathrm {\texttt {quinv}}}$ ) non-attacking filling of $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ , all of its columns are necessarily distinct, and so $\operatorname {\mathrm {perm}}(\sigma )=\operatorname {\mathrm {perm}}_{\lambda }(t)$ .

Example 2.14. We compute $\operatorname {\mathrm {perm}}(\sigma )$ for the tableau $\sigma $ from Example 2.5. There are two distinct columns of height 1, each appearing twice, so the multiplicities are $\{2,2\}$ and thus

$$\begin{align*}{\mathrm{perm}}(\sigma^{(1)})={4\brack 2,2}_t=[4]_t[3]_t/[2]_t.\end{align*}$$

For height 2, there are three columns with multiplicities $\{2,1\}$ , giving

$$\begin{align*}{\mathrm{perm}}(\sigma^{(2)})={3\brack 2,1}_t=[3]_t.\end{align*}$$

Finally, for height 3, there are two distinct columns with multiplicities $\{1,1\}$ , so

$$\begin{align*}{\mathrm{perm}}(\sigma^{(3)})={2\brack 1,1}_t=[2]_t.\end{align*}$$

Thus $\operatorname {\mathrm {perm}}(\sigma ) =\prod _i\operatorname {\mathrm {perm}}(\sigma ^{(i)})=[4]_t[3]_t^2$ .

By choosing a canonical way of sorting columns of equal height in a filling, the formulas (1.1) and (1.2) for $\widetilde {H}_{\lambda }$ can be written more compactly. This was first done in [Reference Corteel, Haglund, Mandelshtam, Mason and Williams5, Theorem 3.5] for the $\operatorname {\mathrm {\texttt {inv}}}$ formula and was later replicated in [Reference Mandelshtam, Orr and Wen18, Theorem 4.2] for the $\operatorname {\mathrm {\texttt {quinv}}}$ analog.

Theorem 2.15. The modified Macdonald polynomial can be obtained as

(2.15) $$ \begin{align} \widetilde{H}_{\lambda}(X;q,t)& = \sum_{\substack{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\\\sigma\,{\mathrm{inv-sorted}}}} {\mathrm{perm}}(\sigma)x^{\sigma}q^{{{\texttt{maj}}}(\sigma)}t^{{{\texttt{inv}}}(\sigma)}, \end{align} $$
(2.16) $$ \begin{align} &= \sum_{\substack{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\\\sigma\,{\mathrm{quinv-sorted}}}} {\mathrm{perm}}(\sigma)x^{\sigma}q^{{{\texttt{maj}}}(\sigma)}t^{{{\texttt{quinv}}}(\sigma)}. \end{align} $$

where the first sum is over $\operatorname {\mathrm {\texttt {inv}}}$ -sorted fillings and the second sum is over $\operatorname {\mathrm {\texttt {quinv}}}$ -sorted fillings according to Definition 2.19.

We outline the strategy for proving Theorem 2.15 as a warm-up for the proof of Theorem 1.1.

2.5.1 The operators $\tau _i$ and $\rho _i$

The operator $\tau _i$ was introduced in [Reference Loehr and Niese16] to act on fillings as an inversion flip operator, characterized by the following properties: it preserves the content and the major index, and when it acts nontrivially, it changes the number of inversions by exactly 1.

For a partition $\lambda $ , we say $1\leq i\leq \ell (\lambda )$ is $\lambda $ -compatible if $\lambda _i=\lambda _{i+1}$ . We say that a transposition $s_i$ is $\lambda $ -compatible if the index i is $\lambda $ -compatible. Moreover, we call two indices $i<j \lambda $ -comparable if $\lambda _i=\lambda _j$ .

For a word $w = w_1 w_2 \cdots w_k \in \mathbb {Z}_{>0}^k$ , the left action of the simple transposition $s_i \in S_k$ (for $1 \le i < k$ ) is defined by swapping the entries at positions i and $i+1$ :

$$\begin{align*}s_i \cdot w = w_1 \cdots w_{i-1} w_{i+1} w_i w_{i+2} \cdots w_k. \end{align*}$$

Then, we define the set of $\lambda $ -compatible permutations of w, denoted $\operatorname {\mathrm {Sym}}_{\lambda }(w)$ , to be the set of words obtained by applying a sequence of $\lambda $ -compatible transpositions to w (applied from right to left):

$$\begin{align*}{\mathrm{Sym}}_{\lambda}(w)=\{w'\in\mathbb{Z}_{>0}^k:w'=s_{i_u}\cdots s_{i_1}\cdot w,\ \text{with each } s_{i_j}\ \lambda\text{-compatible for} 1\leq j\leq u\}. \end{align*}$$

For a filling $\sigma $ of $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ and $\lambda $ -compatible i, define the operator $\mathfrak {t}_i^{(r)}$ to act on $\sigma $ by swapping the entries of the squares $(r,i)$ and $(r,i+1)$ . For $1\leq r,s\leq \lambda _i$ , the compact notation $\mathfrak {t}_i^{[r,s]}:=\mathfrak {t}_i^{(r)}\circ \mathfrak {t}_i^{(r+1)}\circ \cdots \circ \mathfrak {t}_i^{(s)}$ represents a sequence of swaps of entries in consecutive rows between the same pair of adjacent columns. Note that since the $\mathfrak {t}_i^{(r)}$ ’s act on rows independently, they commute, and so $\mathfrak {t}_i^{[r,s]}=\mathfrak {t}_i^{[s,r]}$ . See Example 2.16.

Example 2.16. For example, when $\lambda =(3,3,3,2,2)$ , the $\lambda $ -compatible indices are $\{1,2,4\}$ . For $\sigma $ below, we compute $\mathfrak {t}_2^{[2,3]}(\sigma )$ , $\mathfrak {t}_4^{(2)}(\sigma )$ , and $\mathfrak {t}_4^{[1,2]}(\sigma )$ , with the swapped entries shown in bold:

Definition 2.17 (The operator $\tau _i$ )

For a partition $\lambda $ and a $\lambda $ -compatible index i, let $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ . If columns i and $i+1$ are identical in $\sigma $ , $\tau _i(\sigma )=\sigma $ . Otherwise, let $\ell '$ be minimal such that $\sigma (\ell ',i)\neq \sigma (\ell ',i+1)$ , and let $\ell '\geq h'\leq \lambda _i$ be minimal such that $\mathcal {Q}(\sigma (h'+1,i),\sigma (h',i),\sigma (h'+1,i+1))=\mathcal {Q}(\sigma (h'+1,i+1),\sigma (h',i),\sigma (h'+1,i+1))$ , where per convention, $\sigma (\lambda _i+1,i)=0$ for all i. Then $\tau _i(\sigma )=\mathfrak {t}_i^{[\ell ',h']}(\sigma )$ , swapping the entries in rows $\ell '$ through $h'$ between columns i and $i+1$ , while keeping all other entries unchanged. See Example 2.20.

In [Reference Ayyer, Mandelshtam and Martin2], we defined analogous operators for the $\operatorname {\mathrm {\texttt {quinv}}}$ statistic. These operators were also originally called $\tau _i$ , but we shall assign to them the new name $\rho _i$ to distinguish from the original $\tau _i$ ’s.

Definition 2.18 (The operators $\rho _i$ )

For a partition $\lambda $ and a $\lambda $ -compatible index i, let $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ . If columns i and $i+1$ are identical in $\sigma $ , $\rho _i(\sigma )=\sigma $ . Otherwise, let $\ell $ be maximal such that $\sigma (\ell ,i)\neq \sigma (\ell ,i+1)$ , and let $1\geq h\leq \ell $ be maximal such that $\mathcal {Q}(\sigma (h,i),\sigma (h-1,i),\sigma (h-1,i+1))=\mathcal {Q}(\sigma (h,i+1),\sigma (h-1,i),\sigma (h-1,i+1))$ where per convention, $\sigma (0,i)=\infty $ for all i. Then $\rho _i(\sigma )=\mathfrak {t}_i^{[h,\ell ]}(\sigma )$ , swapping the entries in rows h through $\ell $ between columns i and $i+1$ , while keeping all other entries unchanged. See Example 2.20.

Another description of $\rho _i$ , which will be useful for comparison to the definitions in Section 3, is as follows. Define $\rho _i(\sigma ):=\rho _i^{(\lambda _i)}(\sigma )$ , where the operator $\rho _i^{(r)}$ is defined recursively to act on $\sigma $ as follows based on the contents $a=\sigma (r,i)$ , $b=\sigma (r,i+1)$ , $c=\sigma (r-1,i)$ , $d=\sigma (r-1,i+1)$ in the configuration

  1. i. If $\sigma (r,i)=\sigma (r,i+1)$ , $\rho _i^{(r)}(\sigma )=\rho _i^{(r-1)}(\sigma )$ .

  2. ii. Otherwise, if $\mathcal {Q}(a,c,d)=\mathcal {Q}(b,c,d)$ , $\rho _i^{(r)}(\sigma )=\mathfrak {t}_i^{(r)}(\sigma )$ , and

  3. iii. If $\mathcal {Q}(a,c,d)=\mathcal {Q}(b,c,d)$ , $\rho _i^{(r)}(\sigma )=\rho _i^{(r-1)}(\mathfrak {t}_i^{(r)}(\sigma ))$ .

The intuition behind this definition is that $\rho _i$ scans the rows of $\sigma $ in columns $i,i+1$ from top to bottom, swaps the first pair of differing entries between the two columns (which changes the contribution to $\operatorname {\mathrm {\texttt {quinv}}}$ from the affected L-triple by $\pm 1$ ), and then sequentially swaps the entries in the rows below to prevent any additional changes to $\operatorname {\mathrm {\texttt {quinv}}}$ coming from the L-triples in the rows below. There is a similar recursive definition for $\tau _i$ , which we will omit.

Definition 2.19. For a partition $\lambda $ , we say $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ is $\operatorname {\mathrm {\texttt {inv}}}$ -sorted if $\operatorname {\mathrm {\texttt {inv}}}(\sigma )\leq \operatorname {\mathrm {\texttt {inv}}}(\tau _i(\sigma ))$ for any $\lambda $ -compatible i. If $\sigma $ is $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking, we say it is $\operatorname {\mathrm {\texttt {coinv}}}$ -sorted if and only if every pair of adjacent entries in the bottom-row cells $(1,i),(1,i+1)$ for $\lambda $ -compatible i is increasing from left to right (meaning that $\operatorname {\mathrm {\texttt {coinv}}}(\sigma )\leq \operatorname {\mathrm {\texttt {coinv}}}(\tau _i(\sigma ))$ ). Analogously, we say $\sigma $ is $\operatorname {\mathrm {\texttt {quinv}}}$ -sorted if $\operatorname {\mathrm {\texttt {quinv}}}(\sigma )\leq \operatorname {\mathrm {\texttt {quinv}}}(\rho _i(\sigma ))$ for any $\lambda $ -compatible i. If $\sigma $ is $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking, we say it is $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted if and only if every pair of topmost adjacent entries $(\lambda _i,i),(\lambda _{i},i+1)$ for $\lambda $ -compatible i is increasing from left to right (meaning that $\operatorname {\mathrm {\texttt {coquinv}}}(\sigma )\leq \operatorname {\mathrm {\texttt {coquinv}}}(\tau _i(\sigma ))$ ). See Example 2.21.

Example 2.20. Suppose $\sigma $ has columns $i,i+1$ as shown below, with $\lambda _i=6$ . For $\tau _i(\sigma )$ , we have $\ell '=1$ , and $h'=2$ , since applying $\mathfrak {t}_i^{(2)}$ changes the triple at rows $h',h'+1$ from to , which is not an $\operatorname {\mathrm {\texttt {inv}}}$ triple in both cases. For $\rho _i(\sigma )$ , we have $\ell =5$ , and $h=3$ , since applying $\mathfrak {t}_i^{(3)}$ changes the triple at rows $h,h-1$ from to , which is a $\operatorname {\mathrm {\texttt {quinv}}}$ triple in both cases.

Example 2.21. We show an $\operatorname {\mathrm {\texttt {inv}}}$ -sorted tableau $\sigma _1$ , a $\operatorname {\mathrm {\texttt {coinv}}}$ -sorted $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking tableau $\sigma _2$ , a $\operatorname {\mathrm {\texttt {quinv}}}$ -sorted tableau $\sigma _3$ , and a $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking tableau $\sigma _4$ :

The following lemma establishes the key properties of the $\tau _i$ ’s and the $\rho _i$ ’s, which are to preserve the $\operatorname {\mathrm {\texttt {coinv}}}$ and change the $\operatorname {\mathrm {\texttt {inv}}}$ and $\operatorname {\mathrm {\texttt {quinv}}}$ , respectively, in a controlled way.

Lemma 2.22 [Reference Corteel, Haglund, Mandelshtam, Mason and Williams5, Lemmas 3.9, 3.10, 3.11] and [Reference Ayyer, Mandelshtam and Martin2, Lemmas 7.5 and 7.6]

Let $\lambda $ be a partition, let i be $\lambda $ -compatible and let $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ .

  1. i. $\tau _i$ and $\rho _i$ are involutions.

  2. ii. If columns $i,i+1$ of $\sigma $ are not identical, then $\operatorname {\mathrm {\texttt {inv}}}(\tau _i(\sigma ))=\operatorname {\mathrm {\texttt {quinv}}}(\sigma )\pm 1$ and $\operatorname {\mathrm {\texttt {quinv}}}(\rho _i(\sigma ))=\operatorname {\mathrm {\texttt {quinv}}}(\sigma )\pm 1$ .

  3. iii. $\operatorname {\mathrm {\texttt {maj}}}(\tau _i(\sigma ))=\operatorname {\mathrm {\texttt {maj}}}(\rho _i(\sigma ))= \operatorname {\mathrm {\texttt {maj}}}(\sigma )$ .

The formula (2.15) is proved in [Reference Corteel, Haglund, Mandelshtam, Mason and Williams5] by using the $\tau _i$ ’s to generate the entire set of fillings ${\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+}$ from the set of $\operatorname {\mathrm {\texttt {inv}}}$ -sorted fillings, so that each $\operatorname {\mathrm {\texttt {inv}}}$ -sorted tableau $\nu $ generates a set of fillings with total weight equal to $x^{\nu }t^{\operatorname {\mathrm {\texttt {inv}}}(\nu )}q^{\operatorname {\mathrm {\texttt {maj}}}(\nu )}\operatorname {\mathrm {perm}}(\nu )$ . Similarly, (2.16) is proved in [Reference Mandelshtam, Orr and Wen18] following an identical strategy, by generating the entire set of fillings $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ from applying $\rho _i$ ’s to the set of $\operatorname {\mathrm {\texttt {quinv}}}$ -sorted fillings, so that each $\operatorname {\mathrm {\texttt {quinv}}}$ -sorted tableau $\nu $ generates a set of fillings with total weight equal to $x^{\nu }t^{\operatorname {\mathrm {\texttt {quinv}}}(\nu )}q^{\operatorname {\mathrm {\texttt {maj}}}(\nu )}\operatorname {\mathrm {perm}}(\nu )$ . We need one final technical definition to execute these strategies.

2.5.2 Positive distinguished subexpressions

Using the fact that the symmetric group $S_{\ell }$ is generated by simple transpositions $\{s_1,\ldots ,s_{\ell -1}\}$ , we can use compositions of $\tau _i$ ’s or $\rho _i$ ’s to generate the set of all possible $\lambda $ -compatible permutations of the columns of a given filling $\sigma $ of $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ where $\ell =\ell (\lambda )$ . Unfortunately, in general, neither the $\tau _i$ ’s nor the $\rho _i$ ’s satisfy braid relations. Thus one must choose a canonical way to compose sequences of $\tau _i$ ’s (resp. $\rho _i$ ’s) to that each filling in $\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ is generated by a unique $\operatorname {\mathrm {\texttt {inv}}}$ -sorted (resp. $\operatorname {\mathrm {\texttt {quinv}}}$ -sorted) filling via a well-defined sequence of operators. This is done for the $\tau _j$ ’s using positive distinguished subexpressions (PDS) in [Reference Corteel, Haglund, Mandelshtam, Mason and Williams5, Section 3.2].

The notion of a PDS of a reduced expression originates from [Reference Marsh and Rietsch19]. For a fixed n, the corresponding set of PDS is a subset of the reduced words generated by the simple transpositions $\{s_1,\ldots ,s_{n-1}\}$ , which forms a spanning tree on the Bruhat lattice. In other words, for any permutation $\pi \in S_n$ , the PDS $s_{i_k}\cdots s_{i_1}$ corresponding to $\pi $ is the reduced word coming from the unique path from the identity permutation $id$ to $\pi $ on this spanning tree, so that $\pi =s_{i_k}\cdots s_{i_1}\circ id$ . There is not a unique choice for the set of PDS, but for the sake of concreteness, we will use the same set of PDS as is described in [Reference Corteel, Haglund, Mandelshtam, Mason and Williams5, Section 3.2], which we present in the following definition.

Definition 2.23. Fix n and let $w_0=(n,n-1,\ldots ,2,1)$ . Fix the reduced expression for $w_0$ to be $w_0=s_1(s_2s_1)\cdots (s_{n-1}\cdots s_2s_1)=s_{i_t},\ldots ,s_{i_1}$ (with $t={n\choose 2}$ ). For a permutation $\pi \in S_n$ , define $\operatorname {\mathrm {PDS}}(\pi )=v_t\cdots v_1$ where $v_j\in \{s_{i_j},e\}$ , defined as follows. For two permutations $\alpha ,\beta \in S_n$ , we write $\alpha <\beta $ if $\ell (\alpha )<\ell (\beta )$ . Set $v_{(0)}=\pi $ , and set

$$\begin{align*}v_{(j)}=\begin{cases} v_{(j-1)}s_{i_j}&\text{if}\ v_{(j-1)}s_{i_j}<v_{(j-1)}\\ v_{(j-1)}&\text{otherwise}.\end{cases} \end{align*}$$

Then $v_j=s_{i_j}$ if $v_{(j-1)}s_{i_j}<v_{(j-1)}$ and $v_j=e$ otherwise. Finally, for a permutation $\lambda $ , we define $\operatorname {\mathrm {PDS}}(\lambda ):=\{\operatorname {\mathrm {PDS}}(\alpha ):\alpha \cdot \lambda =\lambda \}$ to be the set of PDS corresponding to the $\lambda $ -compatible permutations. For a filling $\sigma $ of $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ , we define $\operatorname {\mathrm {PDS}}(\sigma )$ to be the subset of $\operatorname {\mathrm {PDS}}(\lambda )$ that corresponds to all possible permutations of the columns of $\sigma $ within the shape $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ .

Now let $\nu :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ be a $\operatorname {\mathrm {\texttt {inv}}}$ -sorted (resp. $\operatorname {\mathrm {\texttt {quinv}}}$ -sorted filling). We shall define a family of tableaux $\{\tau _i\}\nu $ (resp. $\{\rho _i\}\nu $ ), generated by applying sequences of $\tau _i$ ’s (resp. $\rho _i$ ’s) corresponding to $\operatorname {\mathrm {PDS}}(\nu )$ , the set of $\nu $ -compatible PDS. Then,

(2.17) $$ \begin{align} \{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\} = \biguplus_{\substack{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\\\sigma\,{\mathrm{inv-sorted}}}} \{\tau_i\}\sigma=\biguplus_{\substack{\sigma:{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\\\sigma\,{\mathrm{quinv-sorted}}}} \{\rho_i\}\sigma. \end{align} $$

If $\nu $ is a $\operatorname {\mathrm {\texttt {quinv}}}$ -sorted filling, let $\sigma =\rho _{i_k}\circ \cdots \circ \rho _{i_1}(\sigma )\in \{\rho _j\}\nu $ , where $s_{i_k}\cdots s_{i_1}\in \operatorname {\mathrm {PDS}}(\nu )$ . By Lemma 2.22, $\operatorname {\mathrm {\texttt {quinv}}}(\sigma )=t^k\operatorname {\mathrm {\texttt {quinv}}}(\nu )$ . (Morally, this sequence of operators is permuting the columns of $\nu $ by the permutation $s_{i_k}\cdots s_{i_1}$ .) The length (i.e., inversion) generating function of the set $\operatorname {\mathrm {PDS}}(\sigma )$ is precisely equal to $\operatorname {\mathrm {perm}}(\sigma )$ . Thus we obtain

$$\begin{align*}\sum_{\sigma\in\{\rho_j\}\nu}x^{\sigma}q^{{{\texttt{maj}}}(\sigma)}t^{{{\texttt{quinv}}}(\sigma)} = x^{\nu}q^{{{\texttt{maj}}}(\nu)}t^{{{\texttt{quinv}}}(\nu)}{\mathrm{perm}}(\nu).\end{align*}$$

A similar equality holds for $\nu $ that is $\operatorname {\mathrm {\texttt {inv}}}$ -sorted with $\tau _i$ replacing $\rho _i$ and $\operatorname {\mathrm {\texttt {inv}}}$ replacing $\operatorname {\mathrm {\texttt {quinv}}}$ above. Combined with (2.17), this proves Theorem 2.15.

3 The probabilistic operators $\widetilde {\rho }_i$

Unfortunately, the operators $\rho _i$ cannot be used directly to prove Theorem 1.1. They are not well defined on $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking tableaux as they generally fail to preserve the non-attacking condition; moreover, they may not maintain the weight in the $\widehat {\texttt {arm}}$ statistic. To deal with this, we define a probabilistic operator $\widetilde {\rho }_i$ on $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking tableaux that will take the place of the $\rho _i$ ’s.

Denote by $\operatorname {\mathrm {Tab}}(\lambda )$ the set of tableaux $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ that are $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking.

Definition 3.1. Let $\sigma \in \operatorname {\mathrm {Tab}}(\lambda )$ and set $k=\ell (\lambda )$ . The border of $\sigma $ , denoted $\operatorname {\mathrm {top}}(\sigma )$ , is a word in $\mathbb {Z}_{>0}^k$ given by the sequence of entries at the tops of the columns of $\sigma $ , read from left to right:

$$\begin{align*}{\mathrm{top}}(\sigma)=\sigma(\lambda_1,1)\sigma(\lambda_2,2)\cdots \sigma(\lambda_k,k). \end{align*}$$

Define $\operatorname {\mathrm {inc}}_{\lambda }(w)\in \operatorname {\mathrm {Sym}}_{\lambda }(w)$ to be the unique rearrangement of the letters of $\operatorname {\mathrm {top}}(\sigma )$ such that the entries are strictly increasing whenever possible: $\operatorname {\mathrm {inc}}_{\lambda }(w)_i<\operatorname {\mathrm {inc}}_{\lambda }(w)_{i+1}$ for all $\lambda $ -comparable i. Then for any $w\in \mathbb {Z}_{>0}^k$ that can appear as the border of some non-attacking filling of $\operatorname {\mathrm {\texttt {dg}}}(\lambda )$ , we define the length of w with respect to $\lambda $ to be the number of $\lambda $ -comparable inversions:

$$\begin{align*}\ell_{\lambda}(w):=\{i<j: \lambda_i=\lambda_j,\ w_i>w_j\}. \end{align*}$$

Equivalently, $\ell _{\lambda }(w)=\ell (\pi )$ , where $\pi \in S_k$ such that $\pi (\operatorname {\mathrm {inc}}_{\lambda }(w))=w$ , and $\ell (\pi )$ is the length of the permutation $\pi $ . In particular, $\operatorname {\mathrm {inc}}_\lambda (w)$ is the unique element of $\operatorname {\mathrm {Sym}}_\lambda (w)$ such that $\ell _{\lambda }(\operatorname {\mathrm {inc}}_{\lambda }(w))=0$ . Moreover, for any w that can appear as the border of some filling in $\operatorname {\mathrm {Tab}}(\lambda )$ ,

(3.1) $$ \begin{align} \sum_{v\in{\mathrm{Sym}}_{\lambda}(w)}t^{\ell_{\lambda}(v)}=[m_1]_t!\cdots [m_k]_t!={\mathrm{perm}}_{\lambda}(t), \end{align} $$

where $\lambda =\langle 1^{m_1}2^{m_2}\cdots k^{m_k}\rangle $ . See Example 3.4 for an example of $\operatorname {\mathrm {Sym}}_{\lambda }$ , $\operatorname {\mathrm {inc}}_\lambda $ , and $\ell _{\lambda }$ .

Observe that $\sigma \in \operatorname {\mathrm {Tab}}(\lambda )$ with $\operatorname {\mathrm {top}}(\sigma )=w$ is $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted if and only if $w=\operatorname {\mathrm {inc}}_{\lambda }(w)$ .

Definition 3.2. Let $\sigma \in \operatorname {\mathrm {Tab}}(\lambda )$ , and let $1\leq i\leq \ell (\lambda )$ be $\lambda $ -compatible with $L=\lambda _i=\lambda _{i+1}$ . Define the operator $\widetilde {\rho }_i(\sigma )=\widetilde {\rho }_i^{(L)}(\sigma )$ where for $1\leq r\leq \lambda _i$ , $\widetilde {\rho }_i^{(r)}$ acts on $\sigma $ by probabilistically mapping to a set of tableaux $\widetilde {\rho }_i^{(r)}(\sigma )\subseteq \operatorname {\mathrm {Tab}}(\lambda )$ , based on the following cases for the entries $a=\sigma (r,i)$ , $b=\sigma (r,i+1)$ , $c=\sigma (r-1,i)$ , and $d=\sigma (r-1,i+1)$ (assume all configurations are $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking):

  1. (i) If $r=1$ , $\widetilde {\rho }_i^{(r)}$ produces $\mathfrak {t}_i^{(r)}(\sigma )$ with probability 1.

  2. (ii) If $b=c$ (left) or $\mathcal {Q}(a,c,d)=\mathcal {Q}(b,c,d)$ and $\{a,b\}\cap \{c,d\}=\emptyset $ (right), $\widetilde {\rho }_i^{(r)}$ produces $\mathfrak {t}_i^{(r)}(\sigma )$ with probability $1$ .

  3. (iii) If $b=d$ (left) or $\mathcal {Q}(a,c,d)\neq \mathcal {Q}(b,c,d)$ and $\{a,b\}\cap \{c,d\}=\emptyset $ (right), $\widetilde {\rho }_i^{(r)}$ produces the set $\widetilde {\rho }_i^{(r-1)}(\mathfrak {t}_i^{(r)}(\sigma ))$ with probability 1.

  4. (iv) If $a=c$ , set $A:=\operatorname {\mathrm {\widehat {\texttt {arm}}}}(r,i+1)+1$ and $\ell :=\operatorname {\mathrm {\texttt {leg}}}(r,i)+1=L-r+1$ . Then $\widetilde {\rho }_i^{(r)}$ produces

    • $\mathfrak {t}_i^{(r)}(\sigma )$ with probability $\displaystyle (q^{\ell }t^{A})^{\mathcal {Q}(b,a,d)}\frac {1-t}{1-q^{\ell }t^{A+1}}$ , and

    • the set $\widetilde {\rho }_i^{(r-1)}(\mathfrak {t}_i^{(r)}(\sigma ))$ with probability $\displaystyle t^{1-\mathcal {Q}(b,a,d)}\frac {1-q^{\ell }t^{A}}{1-q^{\ell }t^{A+1}}$ .

Define the operator $\widetilde {\rho }_i$ to act on $\sigma \in \operatorname {\mathrm {Tab}}(\lambda )$ by producing the set of tableaux $\widetilde {\rho }_i(\sigma ):=\widetilde {\rho }^{(L)}_i(\sigma )$ . Suppose $\sigma '\in \widetilde {\rho }_i(\sigma )$ such that $\sigma '=\mathfrak {t}_i^{[k,L]}(\sigma )$ . Let $\operatorname {\mathrm {prob}}_i^{(r)}(\sigma ,\sigma ')$ denote the probability that $\widetilde {\rho }^{(r)}_i$ applied to $\mathfrak {t}_i^{[r+1,L]}(\sigma )$ produces $\widetilde {\rho }^{(r-1)}_i\left (\mathfrak {t}_i^{[r,L]}(\sigma )\right )$ when $r>k$ and $\mathfrak {t}_i^{[r,L]}(\sigma )$ when $r=k$ , and call this the transition probability at the r-th row. Then the probability that $\widetilde {\rho }_i$ applied to $\sigma $ produces $\sigma '$ is

$$\begin{align*}{\mathrm{prob}}_i(\sigma, \sigma')=\prod_{r=k}^{L} {\mathrm{prob}}_i^{(r)}(\sigma, \sigma'). \end{align*}$$

Equivalently, $\operatorname {\mathrm {prob}}_i^{(r)}(\sigma , \sigma ')$ can be computed by comparing the entries of rows $r,r-1$ in columns $i,i+1$ of $\sigma $ and $\sigma '$ and identifying which of the cases (i)-(iv) applies. Note that we may drop the index i in $\operatorname {\mathrm {prob}}_i(\sigma ,\sigma ')$ since it is uniquely determined. See Example 3.4 for a sample computation.

Lemma 3.3. Let $\sigma \in \operatorname {\mathrm {Tab}}(\lambda )$ and let i be $\lambda $ -compatible. Then

$$\begin{align*}\sum_{\sigma'\in\widetilde{\rho}_i(\sigma)}{\mathrm{prob}}_i(\sigma,\sigma')=1. \end{align*}$$

Proof. This follows from a straightforward verification that the sum of the transition probabilities at the r-th row when $\widetilde {\rho }_i^{(r)}$ is applied is equal to 1. Indeed, this only needs to be checked for case (iv), where the total probability is

$$ \begin{align*} \frac{(q^{\ell}t^{A})^{\mathcal{Q}(a,c,d)}(1-t)}{1-q^{\ell}t^{A+1}}+\frac{t^{1-\mathcal{Q}(a,c,d)}(1-q^{\ell}t^{A})}{1-q^{\ell}t^{A+1}} =\begin{cases} \frac{q^{\ell}t^{A}-q^{\ell}t^{A+1}+1-q^{\ell}t^{A}}{1-q^{\ell}t^{A+1}},& \mathcal{Q}(a,c,d)=1\\ \frac{1-t+t-q^{\ell}t^{A+1}}{1-q^{\ell}t^{A+1}},& \mathcal{Q}(a,c,d)=0 \end{cases}\quad=1, \end{align*} $$

where we write $A=\operatorname {\mathrm {\widehat {\texttt {arm}}}}(r,i+1)+1$ and $\ell :=\operatorname {\mathrm {\texttt {leg}}}(r,i)+1=L-r+1$ .

Example 3.4. Consider $\lambda =(4,4,2,2,1)$ and let

The $\lambda $ -compatible indices are $1$ and $3$ . The border is $\operatorname {\mathrm {top}}(\sigma )=4\,1\,|\,2\,1\,|\,7$ (the bar delimits the $\lambda $ -comparable blocks), $\operatorname {\mathrm {inc}}_{\lambda }(\operatorname {\mathrm {top}}(\sigma ))=1\,4\,|\,1\,2\,|\,7$ , and

$$\begin{align*}{\mathrm{Sym}}_{\lambda}({\mathrm{top}}(\sigma))=\{4\,1\,|\,2\,1\,|\,7,\ 1\,4\,|\,2\,1\,|\,7,\ 4\,1\,|\,1\,2\,|\,7,\ 1\,4\,|\,1\,2\,|\,7\} \end{align*}$$

with corresponding lengths (with respect to $\lambda $ ) equal to $2, 1, 1, 0$ , respectively. $\widetilde {\rho }_3(\sigma )$ produces the set $\{\mathfrak {t}_3^{(2)}(\sigma )\}$ (case (ii)). We show the details for computing $\widetilde {\rho }_1(\sigma )$ :

$$ \begin{align*} \widetilde{\rho}_1(\sigma)=\widetilde{\rho}^{(4)}_1(\sigma)&=\left\{\mathfrak{t}_1^{(4)}(\sigma)\right\}\bigcup \widetilde{\rho}_1^{(3)}(\mathfrak{t}_1^{(4)}(\sigma))&\qquad \text{(case (iv))}\\ \widetilde{\rho}_1^{(3)}(\mathfrak{t}_1^{(4)}(\sigma))&=\widetilde{\rho}_1^{(2)}(\mathfrak{t}_1^{[3,4]}(\sigma))&\qquad \text{(case (iii))}\\ \widetilde{\rho}_1^{(2)}(\mathfrak{t}_1^{[3,4]}(\sigma))&=\left\{\mathfrak{t}_1^{[3,4]}(\sigma)\right\}\bigcup \widetilde{\rho}_1^{(1)}(\mathfrak{t}_1^{[2,4]}(\sigma))&\qquad \text{(case (iv))}\\ \widetilde{\rho}_1^{(1)}(\mathfrak{t}_1^{[2,4]}(\sigma))&=\left\{\mathfrak{t}_1^{[1,4]}(\sigma))\right\}&\qquad \text{(case (i))}. \end{align*} $$

Thus we get

Labeling the tableaux in $\widetilde {\rho }_1(\sigma )$ as $\sigma _1,\sigma _2,\sigma _3$ , due to the fact that $\mathcal {Q}(1,4,6)=0$ and $\mathcal {Q}(6,3,2)=1$ ,

$$ \begin{align*} {\mathrm{prob}}_1(\sigma,\sigma_1)&={\mathrm{prob}}_1^{(4)}(\sigma,\sigma_1)=\frac{1-t}{1-qt^2},\\ {\mathrm{prob}}_1(\sigma,\sigma_2)&=\prod_{r=2}^4{\mathrm{prob}}_1^{(r)}(\sigma,\sigma_2)=\frac{t(1-qt)}{1-qt^2}\cdot 1 \cdot \frac{q^3t^4(1-t)}{1-q^3t^5},\\ {\mathrm{prob}}_1(\sigma,\sigma_2)&=\prod_{r=1}^4{\mathrm{prob}}_1^{(r)}(\sigma,\sigma_3)=\frac{t(1-qt)}{1-qt^2}\cdot 1 \cdot \frac{1-q^3t^4}{1-q^3t^5} \cdot 1. \end{align*} $$

Adding these together, we confirm that $\operatorname {\mathrm {prob}}_1(\sigma ,\sigma _1)+\operatorname {\mathrm {prob}}_1(\sigma ,\sigma _2)+\operatorname {\mathrm {prob}}_1(\sigma ,\sigma _3)=1$ .

Proposition 3.5. Let $\lambda $ be a partition and let $1\leq i\leq \ell (\lambda )$ be $\lambda $ -compatible. Let $\sigma \in \operatorname {\mathrm {Tab}}(\lambda )$ with $\operatorname {\mathrm {top}}(\sigma )=w$ , such that $w_i<w_{i+1}$ , and let $\sigma ' \in \widetilde {\rho }_i(\sigma )$ . Then $\operatorname {\mathrm {top}}(\sigma ')=s_i\cdot w$ and

(3.2) $$ \begin{align} {\mathrm{wt}}(\sigma'){\mathrm{prob}}(\sigma',\sigma)=t{\mathrm{wt}}(\sigma){\mathrm{prob}}(\sigma,\sigma'). \end{align} $$

Proof. By definition, $\operatorname {\mathrm {top}}(\sigma ')=s_i\cdot w$ , since the swap $\mathfrak {t}_i^{\lambda _i}$ , which exchanges the topmost entries of columns i, $i+1$ , is necessarily applied as part of $\widetilde {\rho }$ .

It remains to show that (3.2) holds. Denote by $\operatorname {\mathrm {wt}}^{(r)}(\sigma )$ the weight contribution of the pair of rows $r,r-1$ to $\operatorname {\mathrm {wt}}(\sigma )$ for $2\leq r\leq \lambda _1$ , not counting the $\operatorname {\mathrm {\texttt {quinv}}}$ coming from any degenerate L-triples. Observe that the degenerate L-triples that contribute to $\operatorname {\mathrm {\texttt {coquinv}}}(\sigma )$ are precisely the pairs of entries in $\operatorname {\mathrm {top}}(\sigma )$ that are comparable with respect to $\lambda $ and that form an inversion and hence are counted by $\ell _{\lambda }(\operatorname {\mathrm {top}}(\sigma ))$ . Thus $t^{\ell _{\lambda }(\operatorname {\mathrm {top}}(\sigma ))}$ is the contribution of the degenerate L-triples to $\operatorname {\mathrm {\texttt {quinv}}}(\sigma )$ . Then we may decompose $\operatorname {\mathrm {wt}}(\sigma )$ as

$$\begin{align*}{\mathrm{wt}}(\sigma)=t^{\ell_{\lambda}({\mathrm{top}}(\sigma))}\prod_{r=2}^{\lambda_1}{\mathrm{wt}}^{(r)}(\sigma). \end{align*}$$

Row r of $\sigma'$ was obtained from $\sigma$ according to one of the rules (i)-(iv) from Definition 3.2. We analyze each of these cases

Case (i): Note that this is a specific instance of a degenerate triple when $\lambda _i=\lambda _{i+1}=1$ . We shall compare $\operatorname {\mathrm {wt}}^{(r)}(\sigma )$ to $\operatorname {\mathrm {wt}}^{(r)}(\sigma ')$ for $\sigma '\in \widetilde {\rho }_i(\sigma )$ for $2\leq r\leq \lambda _i$ . We base our computation on the following. First, we only need to consider the contribution to $\operatorname {\mathrm {\texttt {coinv}}}$ from the pairs of cells $(r,i), (r-1,i)$ and $(r,i+1), (r-1,i+1)$ . Second, we only need to consider the contribution to $\operatorname {\mathrm {\texttt {coquinv}}}$ from the L-triples $(r,i), (r-1,i), (r-1,i+1)$ and $(r,i), (r-1,i), (r-1,j)$ where $j>i+1$ (i.e., the cell $(r-1,j)\in \operatorname {\mathrm {\widehat {Arm}}}(r,i+1)$ ). Finally, the arm and leg factor will depend only on the pairs of cells $(r,i), (r-1,i)$ and $(r,i+1), (r-1,i+1)$ . Let $L:=\lambda _i$ , $\ell :=\operatorname {\mathrm {\texttt {leg}}}(r,i)+1=L-r+1$ and $A:=\operatorname {\mathrm {\widehat {\texttt {arm}}}}(r,i+1)+1$ .

For $r\geq 2$ , we have the following cases, based on the entries $a=\sigma (r,i), b=\sigma (r,i+1), c=\sigma (r-1,i)$ , and $d=\sigma (r-1,i+1)$ .

Case (ii): $\sigma '=\mathfrak {t}_i^{[r,L]}(\sigma )$ . If $\{a,b\}\cap \{c,d\}=\emptyset $ , we have the following configuration when restricted to the rows $r-1,r$ and columns $i,i+1$ :

The arm and leg factors are identical in the two tableaux. We analyze the contribution to $\operatorname {\mathrm {wt}}^{(r)}(\sigma )$ of these four cells. Note that $\mathcal {Q}(a,c,d)=\mathcal {Q}(b,c,d)$ implies that the cyclic orders $a<c<b<d$ and $a<d<b<c$ cannot occur. This yields the five possible (noncyclic) orderings shown in the columns of the table below (since $\mathfrak {t}_i^{(r)}$ is an involution, we assume without loss of generality that $a<b$ ).

Next we compare the respective contributions to $\operatorname {\mathrm {wt}}^{(r)}(\sigma )$ coming from all L-triples involving the four cells together with some cell $x=(r-1,j)\in \operatorname {\mathrm {\widehat {Arm}}}(r,i+1)$ (with $j>i+1$ ), and we denote $f=\sigma (x)$ , as in the configuration below, restricted to the rows $r-1,r$ and columns $i,i+1,j$ .

Since cyclic order is sufficient to determine whether an L-triple is a $\operatorname {\mathrm {\texttt {quinv}}}$ triple, we organize the table based on the relative order of f with respect to $a,b,c,d$ , which are cyclically ordered according to $\mathcal {Q}(a,c,d)=\mathcal {Q}(b,c,d)$ . We represent the cyclic order of a set of distinct entries by writing them in a circle that is intended to be read clockwise, making the following correspondence:

We compare the contribution to versus for all possible cyclic orders of the entries $a,b,c,d,f$ , in the following table:

Since this is true for all $x\in \operatorname {\mathrm {\widehat {Arm}}}(r,i+1)$ , we have $\operatorname {\mathrm {wt}}^{(r)}(\sigma )=\operatorname {\mathrm {wt}}^{(r)}(\sigma ')$ .

Next we analyze the case where $b=c$ . This is the following configuration when restricted to the rows $r-1,r$ and columns $i,i+1$ :

We compare the contribution to $\operatorname {\mathrm {wt}}^{(r)}(\sigma )$ versus $\operatorname {\mathrm {wt}}^{(r)}(\sigma ')$ coming from these four cells in the table below, based on the relative orders of $a,b,d$ , organized based on whether or not $\mathcal {Q}(a,b,d)=0$ :

Thus the ratio of the respective contributions is $1$ if $\mathcal {Q}(a,b,d)=0$ , and $q^{\ell }t$ otherwise.

Next we compare the respective contributions to $\operatorname {\mathrm {wt}}^{(r)}(\sigma )$ coming from all L-triples involving the four cells together with some cell $x=(r-1,j)\in \operatorname {\mathrm {\widehat {Arm}}}(r,i+1)$ with $j>i+1$ , and we denote $f=\sigma (x)$ , as in the configuration below restricted to the rows $r-1,r$ and columns $i,i+1,j$ .

Since cyclic order is sufficient to determine whether a L-triple is a $\operatorname {\mathrm {\texttt {quinv}}}$ triple, we organize the table based on the relative order of f with respect to $a,b,d$ , and based on whether or not $\mathcal {Q}(a,b,d)=0$ .

Since the above holds true for any cell $x\in \operatorname {\mathrm {\widehat {Arm}}}(r+1,i)$ , from the two tables above we have that

$$\begin{align*}\frac{{\mathrm{wt}}^{(r)}(\sigma)}{{\mathrm{wt}}^{(r)}(\sigma')}=\frac{1-t}{1-q^{\ell}t^{A+1}}\times \begin{cases} 1,&\mathcal{Q}(a,b,d)=0\\ q^{\ell}t^{A},&\mathcal{Q}(a,b,d)=1. \end{cases} \end{align*}$$

Note that the prefactor comes from the fact that $\sigma (r+1,i)\neq \sigma (r,i)$ , whereas $\sigma '(r+1,i)= \sigma '(r,i)$ .

Case (iii): $\sigma '=\widetilde {\tau }_i^{(r-1)}(\mathfrak {t}_i^{[r,L]}(\sigma ))$ . If $\{a,b\}\cap \{c,d\}=\emptyset $ , we have the following configuration when restricted to the rows $r-1,r$ and columns $i,i+1$ :

Both $\operatorname {\mathrm {\texttt {coinv}}}$ and the arm and leg factors are identical between rows $r,r-1$ in $\sigma '$ and $\sigma $ . Moreover, all L-triples are preserved with the exception of the triple $(b,d,c)$ replacing the triple $(a,c,d)$ . Then we have $\mathcal {Q}(b,d,c)=1-\mathcal {Q}(b,c,d)=1-(1-\mathcal {Q}(a,c,d))=\mathcal {Q}(a,c,d)$ . Thus $\operatorname {\mathrm {wt}}^{(r)}(\sigma ')=\operatorname {\mathrm {wt}}^{(r)}(\sigma )$ in this case.

Now we analyze the case where $b=d$ , which is the following configuration when restricted to the rows $r-1,r$ and columns $i,i+1$ :

Since all L-triples are preserved except for the triple $(a,c,b)$ in $\sigma $ coming from the four cells above, and since $\sigma (r+1,i)= \sigma (r+1,i)$ , whereas $\sigma '(r,i)= \sigma '(r,i)$ , we have

$$\begin{align*}\frac{{\mathrm{wt}}^{(r)}(\sigma)}{{\mathrm{wt}}^{(r)}(\widetilde{\rho}_i^{(r)}(\sigma))}=\frac{1-q^{\ell}t^{A}}{1-q^{\ell}t^{A+1}}\times \begin{cases} 1,&\mathcal{Q}(a,c,b)=0\\ t,&\mathcal{Q}(a,c,b)=1.\end{cases} \end{align*}$$

Case (iv). If $a=c$ , let $\sigma _1=\mathfrak {t}_i^{(r)}(\sigma )$ and $\sigma _2=\widetilde {\rho }_i^{(r-1)}(\mathfrak {t}_i^{(r)}(\sigma ))$ . Restricted to the rows $r-1,r$ and columns $i,i+1$ , we have the following configurations:

From our analysis of cases (ii) and (iii), we have that

$$ \begin{align*} {\mathrm{wt}}^{(r)}(\sigma_1)&=\frac{1-t}{1-q^{\ell}t^{A+1}}{\mathrm{wt}}^{(r)}(\sigma)\times\begin{cases}1,&\mathcal{Q}(b,a,d)=0\\ q^{\ell}t^{A},&\mathcal{Q}(b,a,d)=1 \end{cases}&={\mathrm{wt}}^{(r)}(\sigma){\mathrm{prob}}(\sigma, \sigma_1),\\ {\mathrm{wt}}^{(r)}(\sigma_2)&=\frac{1-q^{\ell}t^{A}}{1-q^{\ell}t^{A+1}}{\mathrm{wt}}^{(r)}(\sigma)\times\begin{cases}1,&\mathcal{Q}(b,d,a)=0\\ t,&\mathcal{Q}(b,d,a)=1 \end{cases}&={\mathrm{wt}}^{(r)}(\sigma){\mathrm{prob}}(\sigma, \sigma_2). \end{align*} $$

Moreover, since $\mathcal {Q}(b,a,d)=1-\mathcal {Q}(b,d,a)$ , we have that $\operatorname {\mathrm {wt}}^{(r)}(\sigma _1)\operatorname {\mathrm {prob}}(\sigma _1, \sigma )+\operatorname {\mathrm {wt}}^{(r)}(\sigma _2)\operatorname {\mathrm {prob}}(\sigma _2, \sigma )$ is equal to:

$$\begin{align*}{\mathrm{wt}}^{(r)}(\sigma)\times\begin{cases} \frac{1-t}{1-q^{\ell}t^{A+1}}+\frac{t(1-q^{\ell}t^{A})}{1-q^{\ell}t^{A+1}},&\mathcal{Q}(b,a,d)=0\\ \frac{q^{\ell}t^{A}(1-t)}{1-q^{\ell}t^{A+1}}+\frac{1-q^{\ell}t^{A}}{1-q^{\ell}t^{A+1}},&\mathcal{Q}(b,a,d)=1 \end{cases}={\mathrm{wt}}^{(r)}(\sigma). \end{align*}$$

For all cases, if $r=L$ , then $\ell _{\lambda }(\operatorname {\mathrm {top}}(\sigma '))-\ell _{\lambda }(\operatorname {\mathrm {top}}(\sigma ))=\ell _{\lambda }(w')-\ell _{\lambda }(w)=1$ , and otherwise there is no change to the top border of the tableau.

Suppose $\sigma '\in \widetilde {\rho }_i(\sigma )$ such that $\sigma '=\mathfrak {t}_i^{[k,L]}(\sigma )$ so that $\operatorname {\mathrm {prob}}(\sigma , \sigma ')=\prod _{r=k}^L \operatorname {\mathrm {prob}}_i^{(r)}(\sigma ,\sigma ')$ . In particular, $\sigma $ and $\sigma '$ are identical on rows $k-1$ and below. Then

$$ \begin{align*} {\mathrm{wt}}(\sigma'){\mathrm{prob}}(\sigma',\sigma)&=\left(t^{\ell_{\lambda}(w')}\prod_{r=2}^L {\mathrm{wt}}^{(r)}(\sigma')\right){\mathrm{prob}}_i(\sigma', \sigma)\\ &= t^{\ell_{\lambda}(w)+1}\left(\prod_{r=k}^L {\mathrm{wt}}^{(r)}(\widetilde{\rho}_i^{(r)}(\sigma)){\mathrm{prob}}_i^{(r)}(\sigma',\sigma))\right)\left(\prod_{r=2}^{k-1} {\mathrm{wt}}^{(r)}(\sigma)\right)\\ &=t^{\ell_{\lambda}(w)+1}\left(\prod_{r=k}^L {\mathrm{wt}}^{(r)}(\sigma){\mathrm{prob}}_i^{(r)}(\sigma,\sigma')\right)\left(\prod_{r=2}^{k-1} {\mathrm{wt}}^{(r)}(\sigma)\right)\\ &=t{\mathrm{wt}}(\sigma){\mathrm{prob}}(\sigma,\sigma').\\[-42pt] \end{align*} $$

Example 3.6. We show an example of Proposition 3.5 for the tableau $\sigma $ from Example 3.4. Let $\widetilde {\rho }_1(\sigma )=\{\sigma _1,\sigma _2,\sigma _3\}$ . Their weights are

$$ \begin{align*} {\mathrm{wt}}(\sigma)&=\frac{q^5t^7(1-t)^5}{(1-qt)(1-q^2t^4)(1-q^3t^4)(1-qt^3)(1-qt^2)},\\ {\mathrm{wt}}(\sigma_1)&=\frac{q^5t^6(1-t)^6}{(1-qt)(1-q^2t^4)(1-q^3t^4)(1-qt^3)(1-qt^2)^2},\\ {\mathrm{wt}}(\sigma_2)&=\frac{q^8t^{10}(1-t)^6}{(1-q^2t^3)(1-q^3t^5)(1-q^3t^4)(1-qt^3)(1-qt^2)^2},\\ {\mathrm{wt}}(\sigma_3)&=\frac{q^5t^{6}(1-t)^5}{(1-q^2t^3)(1-q^3t^5)(1-qt^3)(1-qt^2)^2}. \end{align*} $$

and the probabilities $\operatorname {\mathrm {prob}}(\sigma ,\sigma _i)$ (computed explicitly in Example 2.20) and $\operatorname {\mathrm {prob}}(\sigma _i,\sigma )$ are

$$ \begin{align*} {\mathrm{prob}}(\sigma,\sigma_1)&=\frac{1-t}{1-qt^2},&\ {\mathrm{prob}}(\sigma,\sigma_2)&=\frac{q^3t^5(1-t)(1-qt)}{(1-qt^2)(1-q^3t^5)},&\ {\mathrm{prob}}(\sigma,\sigma_2)&=\frac{t(1-qt)(1-q^3t^4)}{(1-qt^2)(1-q^3t^5)},\\ {\mathrm{prob}}(\sigma_1,\sigma)&=1,&\ {\mathrm{prob}}(\sigma_2,\sigma)&=\frac{t(1-q^2t^3)}{1-q^2t^4}, &\ {\mathrm{prob}}(\sigma_3,\sigma)&=\frac{t(1-q^2t^3)}{1-q^2t^4}. \end{align*} $$

In $w=\operatorname {\mathrm {top}}(\sigma )=4\,1\,|\,2\,1\,|\,7$ , we have $w_1>w_2$ . We check that for $i=1,2,3$ , the quantities above satisfy

$$\begin{align*}{\mathrm{wt}}(\sigma){\mathrm{prob}}(\sigma,\sigma_i)=t{\mathrm{wt}}(\sigma_i){\mathrm{prob}}(\sigma_i,\sigma). \end{align*}$$

It follows that the weight of a tableau $\sigma $ can be computed as a weighted sum over all tableaux in the set $\widetilde {\rho }_i(\sigma )$ .

Lemma 3.7. Let $\sigma \in \operatorname {\mathrm {Tab}}(\lambda )$ be a $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking tableau with $\operatorname {\mathrm {top}}(\sigma )=w$ . Let $1\leq i\leq \ell (\lambda )$ such that $\lambda _i=\lambda _{i+1}$ . Then

(3.3) $$ \begin{align} {\mathrm{wt}}(\sigma)=\sum_{\substack{\sigma'\in{\mathrm{Tab}}(\lambda)\\ {\mathrm{prob}}_i(\sigma, \sigma')\neq 0}} {\mathrm{wt}}(\sigma'){\mathrm{prob}}_i(\sigma',\sigma)\times\begin{cases} t,& w_i>w_{i+1}\\t^{-1},& w_i<w_{i+1}.\end{cases} \end{align} $$

Proof. Without loss of generality, assume $w_i>w_{i+1}$ .Summing over all $\sigma '$ such that $\operatorname {\mathrm {prob}}_i(\sigma , \sigma ')\neq 0$ :

$$\begin{align*}{\mathrm{wt}}(\sigma)={\mathrm{wt}}(\sigma)\sum_{\sigma'\in{\mathrm{Tab}}(\lambda)}{\mathrm{prob}}_i(\sigma,\sigma')=\sum_{\sigma'\in{\mathrm{Tab}}(\lambda)}t{\mathrm{wt}}(\sigma'){\mathrm{prob}}_i(\sigma',\sigma), \end{align*}$$

where the second equality is due to Proposition 3.5.

Definition 3.8. Let $\sigma \in \operatorname {\mathrm {Tab}}(\lambda )$ be a $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking tableau with $\operatorname {\mathrm {top}}(\sigma )=w$ . Let $s_{i_{\ell }}\cdots s_{i_1}\in \operatorname {\mathrm {PDS}}(\lambda )$ be the PDS such that $s_{i_{\ell }}\cdots s_{i_1} \cdot w=\operatorname {\mathrm {inc}}_{\lambda }(w)$ . (Note that $s_{i_j}$ is by definition $\lambda $ -compatible for each j). Suppose $\sigma \in \widetilde {\rho }_{\ell }\circ \cdots \circ \widetilde {\rho }_1(\sigma ')$ for some $\sigma '$ with $\operatorname {\mathrm {top}}(\sigma ')=\operatorname {\mathrm {inc}}_{\lambda }(w)$ (i.e $\sigma '$ is $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted). Then we write the probability of producing $\sigma $ from $\sigma '$ as the sum over the probabilities of all possible chains $(\sigma ^{\prime }_0,\sigma ^{\prime }_1,\ldots ,\sigma ^{\prime }_{\ell })$ of tableaux that start with $\sigma ^{\prime }_0=\sigma '$ and end with $\sigma ^{\prime }_{\ell }=\sigma $ , and the k-th element of the chain is produced by applying $\widetilde {\rho }_{i_k}$ to the $k-1$ ’st element of the chain, for $1\leq k\leq \ell $ :

(3.4) $$ \begin{align} {\mathrm{prob}}(\sigma',\sigma)= \sum_{\substack{(\sigma^{\prime}_{\ell-1},\ldots,\sigma^{\prime}_1,\sigma^{\prime}_0=\sigma')\in{\mathrm{Tab}}(\lambda)^{\ell}\\\sigma^{\prime}_{k}\in\widetilde{\rho}_{i_{k}}(\sigma^{\prime}_{k-1}),\ 1\leq k\leq\ell-1\\ \sigma \in\widetilde{\rho}_{i_{\ell}}(\sigma^{\prime}_{\ell-1})}}\ \prod_{k=1}^{\ell} {\mathrm{prob}}_{i_k}(\sigma^{\prime}_{k-1},\sigma^{\prime}_{k}). \end{align} $$

In particular, by iterating Lemma 3.3, we get that for any $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted tableau $\tau $ with top border v such that $\ell _{\lambda }(v)=0$ and any $\lambda $ -compatible rearrangement $w\in \operatorname {\mathrm {Sym}}_{\lambda }(v)$ ,

(3.5) $$ \begin{align} \sum_{\substack{\sigma'\in{\mathrm{Tab}}(\lambda)\\ {\mathrm{top}}(\sigma')=w}}{\mathrm{prob}}(\tau,\sigma')=1. \end{align} $$

Note that the definition of $\operatorname {\mathrm {prob}}(\sigma ,\sigma ')$ can be extended to any pair of tableaux $\sigma ,\sigma '\in \operatorname {\mathrm {Tab}}(\lambda )$ , as the sum over all admissible chains of tableaux arising from the application of a sequence of operators given by a PDS to get from $\operatorname {\mathrm {top}}(\sigma )$ to $\operatorname {\mathrm {top}}(\sigma ')$ . When no such PDS exists, or when there are no such admissible chains of tableaux, this probability is zero, as expected. For our purposes, it suffices to limit the definition to $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted tableaux $\sigma $ .

Lemma 3.9. Let $\sigma \in \operatorname {\mathrm {Tab}}(\lambda )$ be a $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking tableau with $\operatorname {\mathrm {top}}(\sigma )=w$ . Then

$$\begin{align*}{\mathrm{wt}}(\sigma)=t^{\ell_{\lambda}(w)}\sum_{\substack{\sigma'\in{\mathrm{Tab}}(\lambda)\\ {\mathrm{top}}(\sigma')={\mathrm{inc}}_{\lambda}(w)}} {\mathrm{wt}}(\sigma'){\mathrm{prob}}(\sigma',\sigma). \end{align*}$$

Proof. Let $s_{i_{\ell }}\cdots s_{i_1}$ be the PDS such that $s_{i_{\ell }}\cdots s_{i_1}\cdot w=\operatorname {\mathrm {inc}}_{\lambda }(w)$ . Note that $s_{i_j}$ is by definition $\lambda $ -compatible for each j, and that $\ell _{\lambda }(w)=\ell $ . Repeated application of Lemma 3.7 yields

(3.6) $$ \begin{align} {\mathrm{wt}}(\sigma)=t^{\ell}\sum_{\substack{\sigma'\in{\mathrm{Tab}}(\lambda)\\ {\mathrm{top}}(\sigma')={\mathrm{inc}}_{\lambda}(w)}} {\mathrm{wt}}(\sigma') \sum_{\substack{(\sigma^{\prime}_{\ell-1},\ldots,\sigma^{\prime}_1,\sigma^{\prime}_0=\sigma')\in{\mathrm{Tab}}(\lambda)^{\ell}\\\sigma^{\prime}_{j}\in\widetilde{\rho}_{i_{j}}(\sigma^{\prime}_{j-1}),\ 1\leq j\leq\ell-1\\ \sigma \in\widetilde{\rho}_{i_{\ell}}(\sigma^{\prime}_{\ell-1})}}\ \prod_{j=1}^{\ell} {\mathrm{prob}}_{i_j}(\sigma^{\prime}_{j-1},\sigma^{\prime}_{j}). \end{align} $$

The claim follows from Definition 3.8.

We now have all the ingredients to prove our main result, Theorem 1.1.

Proof of Theorem 1.1

Let $\lambda $ be a partition with $k:=\ell (\lambda )$ . The right hand side of (2.12) can be written as a sum over all possible borders $w\in \mathbb {Z}^{k}_{>0}$ of $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking fillings in $\operatorname {\mathrm {Tab}}(\lambda )$ :

(3.7) $$ \begin{align} {\mathrm{perm}}_{\lambda}(t)P_{\lambda}(X;q,t)&=\sum_{\substack{\sigma\in{\mathrm{Tab}}(\lambda)}}{\mathrm{wt}}(\sigma)=\sum_{w\in\mathbb{Z}_{>0}^{k}}\ \sum_{\substack{\sigma\in{\mathrm{Tab}}(\lambda)\\ {\mathrm{top}}(\sigma)=w}}{\mathrm{wt}}(\sigma)\nonumber\\ &=\sum_{w\in\mathbb{Z}_{>0}^{k}}\ \sum_{\substack{\sigma\in{\mathrm{Tab}}(\lambda)\\ {\mathrm{top}}(\sigma)=w}}\ \sum_{\substack{\sigma'\in{\mathrm{Tab}}(\lambda)\\ {\mathrm{top}}(\sigma')={\mathrm{inc}}_{\lambda}(w)}} t^{\ell_{\lambda}(w)}{\mathrm{wt}}(\sigma'){\mathrm{prob}}(\sigma',\sigma) \end{align} $$
(3.8) $$ \begin{align} &=\sum_{w\in\mathbb{Z}_{>0}^{k}}t^{\ell_{\lambda}(w)} \sum_{\substack{\sigma'\in{\mathrm{Tab}}(\lambda)\\ {\mathrm{top}}(\sigma')={\mathrm{inc}}_{\lambda}(w)}} {\mathrm{wt}}(\sigma')=\sum_{\substack{v\in\mathbb{Z}_{>0}^{k}\\\ell_{\lambda}(v)=0}}\ \sum_{\substack{\sigma'\in{\mathrm{Tab}}(\lambda)\\ {\mathrm{top}}(\sigma')=v}}{\mathrm{wt}}(\sigma')\sum_{w\in{\mathrm{Sym}}_{\lambda}(v)}t^{\ell_{\lambda}(w)}\end{align} $$
(3.9) $$ \begin{align} &=\sum_{\substack{v\in\mathbb{Z}_{>0}^{k}\\\ell_{\lambda}(v)=0}}\ \sum_{\substack{\sigma'\in{\mathrm{Tab}}(\lambda)\\ {\mathrm{top}}(\sigma')=v}}{\mathrm{wt}}(\sigma'){\mathrm{perm}}_{\lambda}(t)={\mathrm{perm}}_{\lambda}(t) \sum_{\substack{\sigma\in{\mathrm{Tab}}(\lambda)\\\sigma\,{\mathrm{coquinv-sorted}}}} {\mathrm{wt}}(\sigma). \end{align} $$

where (3.7) is by Lemma 3.9, (3.8) is by (3.5), (3.9) is by (3.1), and the final equality is the definition of a $\operatorname {\mathrm {\texttt {quinv}}}$ -sorted filling. The result is obtained by canceling out the $\operatorname {\mathrm {perm}}_{\lambda }(t)$ factor.

4 A compact inv formula for $P_{\lambda }(X;q,t)$

A similar strategy can be used to compress (2.3) using probabilistic operators that extend the $\tau _i$ ’s to the non-attacking setting. Denote the set of $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking fillings $\sigma :\operatorname {\mathrm {\texttt {dg}}}(\lambda )\rightarrow \mathbb {Z}^+$ by $\operatorname {\mathrm {Tab}}'(\lambda )$ . For $\sigma \in \operatorname {\mathrm {Tab}}'(\lambda )$ , define

$$\begin{align*}{\mathrm{wt}}_{{\mathrm{HHL}}}(\sigma)=t^{{{\texttt{coinv}}}(\sigma)}q^{{{\texttt{maj}}}(\sigma)}\prod_{\substack{u,~{\mathrm{South}}(u)\in{{\texttt{dg}}}(\lambda)\\\sigma(u)\neq \sigma({\mathrm{South}}(u))}}\frac{1-t}{1-q^{{{\texttt{leg}}}(u)}t^{{{\texttt{arm}}}(u)}}, \end{align*}$$

so that (2.3) becomes $P_{\lambda }(X;q,t)=\sum _{\substack {\sigma \in \operatorname {\mathrm {Tab}}'(\lambda )}}\operatorname {\mathrm {wt}}_{\operatorname {\mathrm {HHL}}}(\sigma )$ . Then we obtain a new compact formula for $P_{\lambda }$ in terms of the $\operatorname {\mathrm {\texttt {inv}}}$ statistic on $\operatorname {\mathrm {\texttt {coinv}}}$ -sorted $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking tableaux (see Definition 2.19).

Theorem 4.1. The Macdonald polynomial $P_{\lambda }(X;q,t)$ is given by

(4.1) $$ \begin{align} P_{\lambda}(X;q,t)=\Pi_{\lambda}(q,t)\hspace{-0.1in}\sum_{\substack{\sigma\in{\mathrm{Tab}}'(\lambda)\\\sigma\,{\mathrm{coinv-sorted}}}}\hspace{-0.1in}{\mathrm{wt}}_{{\mathrm{HHL}}}(\sigma), \end{align} $$

where

$$\begin{align*}\Pi_{\lambda}(q,t)=\prod_{u\in\overline{{{\texttt{dg}}}}(\lambda)}\frac{1-q^{{{\texttt{leg}}}(u)+1}t^{{{\texttt{arm}}}(u)+1}}{1-q^{{{\texttt{leg}}}(u)+1}t^{{\mathrm{\widehat{\texttt{arm}}}}(u)+1}}. \end{align*}$$

The proof of Theorem 4.1 is identical to the proof of its $\operatorname {\mathrm {\texttt {quinv}}}$ analog, Theorem 1.1, modulo the definition of the probabilistic operators. Define the probabilistic $\operatorname {\mathrm {\texttt {inv}}}$ operators, denoted $\widetilde {\tau }_i$ , as follows.

Definition 4.2. Let $\sigma \in \operatorname {\mathrm {Tab}}'(\lambda ,n)$ be an $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking tableau, and let $1\leq i\leq \ell (\lambda )$ be $\lambda $ -compatible with $L=\lambda _i=\lambda _{i+1}$ . Define the operator $\widetilde {\tau }_i(\sigma ):=\widetilde {\tau }_i^{(1)}(\sigma )$ , where for $1\leq r\leq \lambda _i$ , $\widetilde {\tau }_i^{(r)}$ acts on $\sigma $ by probabilistically producing a set of tableaux, denoted by $\widetilde {\tau }_i^{(r)}(\sigma )$ , based on the following cases for the entries $a=\sigma (r,i)$ , $b=\sigma (r,i+1)$ , $c=\sigma (r+1,i)$ , and $d=\sigma (r+1,i+1)$ (assume all configurations are $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking):

  1. (i) If $r=L$ , $\widetilde {\tau }_i^{(r)}$ produces $\mathfrak {t}_i^{(r)}(\sigma )$ with probability 1.

  2. (ii) If $b=c$ (left) or $\{a,b\}\cap \{c,d\}=\emptyset $ and $\mathcal {Q}(c,a,d)=\mathcal {Q}(c,b,d)$ (right), $\widetilde {\tau }_i^{(r)}$ produces $\mathfrak {t}_i^{(r)}(\sigma )$ with probability $1$ .

  3. (iii) If $b=d$ (left) or $\{a,b\}\cap \{c,d\}=\emptyset $ and $\mathcal {Q}(c,a,d)\neq \mathcal {Q}(c,b,d)$ (right), $\widetilde {\tau }_i^{(r)}$ produces the set $\widetilde {\tau }_i^{(r+1)}(\mathfrak {t}_i^{(r)}(\sigma ))$ with probability 1.

  4. (iv) If $a=c$ , $\widetilde {\tau }_i^{(r)}$ produces $\mathfrak {t}_i^{(r)}(\sigma )$ with probability $(q^{\ell '}t^{A'})^{\mathcal {Q}(a,b,d)}(1-t)/(1-q^{\ell '}t^{A'+1})$ and it produces the set $\widetilde {\tau }_i^{(r+1)}(\mathfrak {t}_i^{(r)}(\sigma ))$ with probability $t^{1-\mathcal {Q}(a,b,d)}(1-q^{\ell '}t^{A'})/(1-q^{\ell '}t^{A'+1})$ , where $A':=\operatorname {\mathrm {\texttt {arm}}}(r+1,i+1)+1$ and $\ell ':=\operatorname {\mathrm {\texttt {leg}}}(r+1,i)+1=L-r$ .

Suppose $\sigma '\in \widetilde {\tau }_i(\sigma )$ such that $\sigma '=\mathfrak {t}_i^{[1,k]}(\sigma )$ . Let $\operatorname {\mathrm {prob}}_i^{(r)}(\sigma ,\sigma ')$ denote the probability that $\widetilde {\tau }^{(r)}_i$ applied to $\mathfrak {t}_i^{[1,r-1]}(\sigma )$ produces $\widetilde {\tau }^{(r+1)}_i\left (\mathfrak {t}_i^{[1,r]}(\sigma )\right )$ when $r<k$ and $\mathfrak {t}_i^{[1,r]}(\sigma )$ when $r=k$ . Then the probability that $\widetilde {\tau }_i$ applied to $\sigma $ produces $\sigma '$ is

$$\begin{align*}{\mathrm{prob}}_i(\sigma, \sigma')=\prod_{r=1}^{k} {\mathrm{prob}}_i^{(r)}(\sigma, \sigma'). \end{align*}$$

Definition 4.3. Let $\sigma \in \operatorname {\mathrm {Tab}}'(\lambda )$ and set $k=\ell (\lambda )$ . The bottom border of $\sigma $ , denoted $\operatorname {\mathrm {bot}}(\sigma )$ , is a word in $\mathbb {Z}_{>0}^k$ given by the sequence of entries in the bottom row of $\sigma $ , read from left to right:

$$\begin{align*}{\mathrm{bot}}(\sigma)=\sigma(1,1)\sigma(1,2)\cdots\sigma(1,k). \end{align*}$$

Define $\operatorname {\mathrm {dec}}_{\lambda }(w)\in \operatorname {\mathrm {Sym}}_{\lambda }(w)$ to be the unique arrangement of the bottom border such that the entries are decreasing within each block of columns of the same length: $\operatorname {\mathrm {dec}}_{\lambda }(w)_i>\operatorname {\mathrm {dec}}_{\lambda }(w)_{i+1}$ for all $\lambda $ -compatible i. Then we define the length of a bottom border w with respect to $\lambda $ to be the number of $\lambda $ -comparable coinversions:

$$\begin{align*}\ell^{\prime}_{\lambda}(w):=\{i<j: \lambda_i=\lambda_j, w_i<w_j\}. \end{align*}$$

Since inversions and coinversions are equidistributed, we have $\sum _{v\in \operatorname {\mathrm {Sym}}_{\lambda }(w)}t^{\ell ^{\prime }_{\lambda }(v)}=\operatorname {\mathrm {perm}}_{\lambda }(t)$ . Observe that $\sigma \in \operatorname {\mathrm {Tab}}'(\lambda )$ with $\operatorname {\mathrm {bot}}(\sigma )=w$ is $\operatorname {\mathrm {\texttt {coinv}}}$ -sorted if and only if $w=\operatorname {\mathrm {dec}}_{\lambda }(w)$ .

A similar case analysis to the one done in Section 3 produces the $\operatorname {\mathrm {\texttt {inv}}}$ analog of Proposition 3.5.

Lemma 4.4. Let $\lambda $ be a partition and let $1\leq i\leq \ell (\lambda )$ be $\lambda $ -compatible. Let $\sigma \in \operatorname {\mathrm {Tab}}'(\lambda ,n)$ with $\operatorname {\mathrm {bot}}(\sigma )=w$ , such that $w_i>w_{i+1}$ , and let $\sigma \in \widetilde {\tau }_i(\sigma )$ . Then $\operatorname {\mathrm {bot}}(\sigma ')=s_i\cdot w$ and

(4.2) $$ \begin{align} {\mathrm{wt}}_{{\mathrm{HHL}}}(\sigma'){\mathrm{prob}}_i(\sigma',\sigma)=t{\mathrm{wt}}_{{\mathrm{HHL}}}(\sigma){\mathrm{prob}}_i(\sigma,\sigma'). \end{align} $$

Again, the same argument used to prove Lemma 3.9 yields the $\operatorname {\mathrm {\texttt {inv}}}$ analog.

Lemma 4.5. Let $\sigma \in \operatorname {\mathrm {Tab}}'(\lambda )$ be an $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking tableau with $\operatorname {\mathrm {bot}}(\sigma )=w$ . Then

$$\begin{align*}{\mathrm{wt}}_{{\mathrm{HHL}}}(\sigma)=t^{\ell_{\lambda}(w)}\sum_{\substack{\sigma'\in{\mathrm{Tab}}'(\lambda)\\ {\mathrm{bot}}(\sigma')={\mathrm{dec}}_{\lambda}(w)}} {\mathrm{wt}}_{{\mathrm{HHL}}}(\sigma'){\mathrm{prob}}(\sigma',\sigma). \end{align*}$$

Moreover, for any $\operatorname {\mathrm {\texttt {coinv}}}$ -sorted $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking tableau $\tau $ with bottom row v such that $v=\operatorname {\mathrm {dec}}_{\lambda }(v)$ and any $\lambda $ -compatible permutation $w\in \operatorname {\mathrm {Sym}}_{\lambda }(v)$ ,

$$\begin{align*}\sum_{\substack{\sigma'\in{\mathrm{Tab}}'(\lambda)\\ {\mathrm{bot}}(\sigma')=w}}{\mathrm{prob}}(\tau,\sigma')=1. \end{align*}$$

Proof of Theorem 4.1

Let $\lambda $ be a partition and set $k:=\ell (\lambda )$ . First, using (2.13), we write

$$\begin{align*}\frac{\widetilde{{\mathrm{PR}}}_{\lambda}(q,t)}{{\mathrm{PR}}_{\lambda}(q,t)} = {\mathrm{perm}}_{\lambda}(q,t)^{-1}\Pi_{\lambda}(q,t). \end{align*}$$

Then the right hand side of (2.3) can be written as a sum over all possible bottom rows $w\in \mathbb {Z}^{k}_{>0}$ of $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking fillings in $\operatorname {\mathrm {Tab}}'(\lambda )$ :

(4.3) $$ \begin{align} P_{\lambda}(X;q,t)&= {\mathrm{perm}}_{\lambda}(t)^{-1}\Pi_{\lambda}(q,t)\sum_{w\in\mathbb{Z}_{>0}^{k}}\ \sum_{\substack{\sigma\in{\mathrm{Tab}}'(\lambda)\\ {\mathrm{bot}}(\sigma)=w}}{\mathrm{wt}}_{{\mathrm{HHL}}}(\sigma)\nonumber\\ &={\mathrm{perm}}_{\lambda}(t)^{-1}\Pi_{\lambda}(q,t)\sum_{w\in\mathbb{Z}_{>0}^{k}}\ \sum_{\substack{\sigma\in{\mathrm{Tab}}'(\lambda)\\ {\mathrm{bot}}(\sigma)=w}}\ \sum_{\substack{\sigma'\in{\mathrm{Tab}}'(\lambda)\\ {\mathrm{bot}}(\sigma')={\mathrm{dec}}_{\lambda}(w)}} t^{\ell_{\lambda}(w)}{\mathrm{wt}}_{{\mathrm{HHL}}}(\sigma'){\mathrm{prob}}(\sigma',\sigma) \end{align} $$
(4.4) $$ \begin{align} &=\Pi_{\lambda}(q,t) \sum_{\substack{\sigma\in{\mathrm{Tab}}'(\lambda)\\\sigma\,{\mathrm{coinv-sorted}}}} {\mathrm{wt}}_{{\mathrm{HHL}}}(\sigma) \end{align} $$

where (4.3) is by Lemma 4.5, and the final equality follows from (3.1) and the definition of a $\operatorname {\mathrm {\texttt {coinv}}}$ -sorted $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking filling.

5 Comparison to Martin’s multiline queues

In this section, we explain the map from sorted $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking tableaux to Martin’s multiline queues in [Reference Martin20], and show that at $x_1=x_2=\cdots =q=1$ , the weights of our tableaux correspond to the weights of the multiline queues.

Definition 5.1 [Reference Martin20, Algorithms 1 and 2]

Let $\lambda $ be a partition, fix an integer $n\geq \ell (\lambda )$ , and set $L:=\lambda _1$ . Define $\mathbb {Z}_n:=\mathbb {Z}/n\mathbb {Z}$ with representatives $\mathbb {Z}_n=\{1,\ldots ,n\}$ . A $n\times L$ cylindric lattice is a lattice with L rows numbered from bottom to top and n columns which are numbered by $\mathbb {Z}_n$ from left to right such that $n+1\equiv 1$ . A particle system of type $(\lambda , n)$ is a configuration of particles on an $n\times L$ cylindric lattice, where each site of the lattice is occupied by at most one particle, and each row j contains $\lambda _j$ particles. See Example 5.2 for an example of a particle system (ignoring the lines linking the particles).

Fix a sequence of permutations $(\pi _{r,\ell })_{2\leq r\leq \ell \leq L}$ where $\pi _{r,\ell }\in S_{\lambda ^{\prime }_{\ell }-\lambda ^{\prime }_{\ell +1}}$ for $2\leq r\leq \ell \leq L$ . A multiline queue of type $(\lambda ,n)$ is a particle system combined with a pairing of the particles between adjacent rows in an order determined by the sequence of permutations $(\pi _{r,\ell })_{r,\ell }$ . Each pairing is assigned a weight in $\mathbb {Q}(t)$ . The pairings and weights are obtained according to the following procedure.

  • For each row $r=L,L-1,\ldots ,2$ in that order, begin by labeling all unlabeled particles with “r”.

  • Within row r, let $\pi _{r,\ell }$ determine the pairing order of particles labeled $\ell $ . For $\ell =L,\ldots ,r$ in that order, consider each particle labeled $\ell $ in turn according to the order $\pi _{r,\ell }$ .

    1. (i) If there is an unlabeled particle in the same column in row $r-1$ , pair to that particle. The weight of such a pairing is 1, and we call this a trivial pairing.

    2. (ii) Otherwise, the pairing is nontrivial. Choose an unlabeled particle to pair with in row $r-1$ , and call this pairing p. The weight of the pairing p is $t^{s(p)}(1-t)/(1-t^{f(p)+1})$ where $f(p)$ is the total number of unlabeled particles in row $r-1$ remaining after p is made, and $s(p)$ is the number of unlabeled particles (cyclically) between the pair when looking to the right from the particle in row r. For such a pairing, denote $r(p):=r$ and $\ell (p):=\ell $ .

    3. (iii) Label the particle in row $r-1$ that is paired to with the label “ $\ell $ ”.

The weight $\operatorname {\mathrm {wt}}(M)$ of a multiline queue M is the product of the weights over all of its pairings:

$$\begin{align*}{\mathrm{wt}}(M)=\prod_{p} \frac{t^{s(p)}(1-t)}{1-t^{f(p)+1}}. \end{align*}$$

Denote the set of multiline queues of type $(\lambda ,n)$ by $\operatorname {\mathrm {MLQ}}_M(\lambda ,n)$ (we use the notation $\operatorname {\mathrm {MLQ}}_M$ to distinguish from the multiline queues defined in [Reference Corteel, Mandelshtam and Williams6]).

Let $\sigma \in \operatorname {\mathrm {Tab}}(\lambda ,n)$ be a $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking filling. We will map $\sigma $ to a multiline queue M so that $\operatorname {\mathrm {wt}}(\sigma )=\operatorname {\mathrm {wt}}(M)$ . First, for $1\leq r\leq \lambda _1$ , the positions of the particles in row r of the particle system of M are given by the contents of row r in $\sigma $ : the columns in M that contain particles are $\{\sigma (r,1),\ldots ,\sigma (r,\lambda ^{\prime }_r)\}$ . Next, the permutations $\pi _{r,\ell }$ dictating the pairing orders are obtained by standardizing the word obtained by scanning the entries of $\sigma $ in row r in the columns of height $\ell $ . Finally, the pairings are given as follows: a particle at site $(r,\sigma (r,k))$ in the multiline queue is paired to the particle at site $(r-1,\sigma (r-1,k))$ . The $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking condition on $\sigma $ implies condition (i) is satisfied, and the fact that $\sigma $ is sorted means each pairing of a given configuration is counted exactly once. See Example 5.2.

Example 5.2. For $\sigma \in \operatorname {\mathrm {Tab}}((4,4,3,3,1),9)$ below, with weight

$$\begin{align*}{\mathrm{wt}}(\sigma)=\frac{t^7q^6(1-t)^7}{(1-qt^4)(1-qt^3)(1-q^2t^4)(1-qt)(1-q^3t^4)(1-q^2t^3)(1-q^2t^2)}, \end{align*}$$

we have the corresponding multiline queue M.

Matching the order of particles to their order in the tableau when read left to right, we have $\pi _{4,4}=\pi _{3,4}=\pi _{3,3}=\pi _{2,4}=12\in S_2$ , $\pi _{2,3}=21\in S_2$ . Thus the weights on the pairings for $(r,\ell )=(4,4)$ are $\frac {t^2(1-t)}{1-t^4}\cdot \frac {1-t}{1-t^3}$ , for $(r,\ell )=(3,4)$ they are $\frac {t^3(1-t)}{1-t^4}\cdot 1$ , for $(r,\ell )=(3,3)$ they are $1\cdot \frac {1-t}{1-t}$ , for $(r,\ell )=(2,4)$ they are $1\cdot \frac {t(1-t)}{1-t^4}$ , and for $(r,\ell )=(2,3)$ they are $\frac {t(1-t)}{1-t^3}\cdot \frac {1-t}{1-t^2}$ . Thus

$$\begin{align*}{\mathrm{wt}}(M)=\frac{t^7(1-t)^7}{(1-t^4)^3(1-t^3)^2(1-t^2)(1-t)}={\mathrm{wt}}(\sigma)\big\vert_{q=1}.\end{align*}$$

For each $r>1$ and $1\leq k\leq \lambda ^{\prime }_r$ , the pairing $p_{r,j}$ in M between the particles $(r,\sigma (r,k))$ and $(r-1,\sigma (r-1,k))$ is trivial if and only if $\sigma (r,k)=\sigma (r-1,k)$ , and contributes 1 both to $\operatorname {\mathrm {wt}}(M)$ and $\operatorname {\mathrm {wt}}(\sigma )$ . Otherwise if the pairing p is nontrivial, we observe that $f(p)$ (the number of remaining unlabeled particles in row $r-1$ after the pairing p has been made) is equal to $\operatorname {\mathrm {\widehat {\texttt {arm}}}}(r,k)$ . Similarly, $s(p)$ is the number of indices $k<j$ such that cyclically, $\sigma (r,k)<\sigma (r-1,j)<\sigma (r-1,k)$ , which means $\mathcal {Q}(\sigma (r,k),\sigma (r-1,k),\sigma (r-1,j))=1$ making that corresponding L-triple a coquinv triple. Thus $t^{s(p)}(1-t)/(1-t^{f(p)+1})$ is equal to the contribution to $\operatorname {\mathrm {wt}}(\sigma )$ from this pair of cells. Taking the product over all pairings, we get the following lemma.

Lemma 5.3. Fix a partition $\lambda $ and an integer $n\geq \ell (\lambda )$ . The multiline queues of type $(\lambda ,n)$ defined in Definition 5.1 are in bijection with the set of $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking fillings in $\operatorname {\mathrm {Tab}}(\lambda ,n)$ with

$$\begin{align*}\sum_{M\in {\mathrm{MLQ}}_M(\lambda,n)}{\mathrm{wt}}(M)(t)=\sum_{\substack{\sigma\in{\mathrm{Tab}}(\lambda,n)\\\sigma\,{\mathrm{coquinv-sorted}}}}{\mathrm{wt}}(\sigma)(1,\ldots,1;1,t). \end{align*}$$

Finally, if we associate to $M\in \operatorname {\mathrm {MLQ}}_M(\lambda ,n)$ a weight in $x_1,\ldots ,x_n,q$ , we obtain an alternative multiline queue formula for $P_{\lambda }(X;q,t)$ in terms of Martin’s multiline queues. Define $x^M:=\prod _i x_i^{m_i(M)}$ where $m_i(M)$ is the total number of particles in column i of M, and define

$$\begin{align*}{{\texttt{maj}}}(M):=\sum_p \ell(p)-r(p)+1 \end{align*}$$

where the sum is over all pairings p in M that wrap around the cylinder. Define the weight $\operatorname {\mathrm {wt}}(M)(X_n;q,t)$ to be

$$\begin{align*}{\mathrm{wt}}(M)(X_n;q,t):=x^Mq^{{{\texttt{maj}}}(M)}\prod_p \frac{t^{s(p)}(1-t)}{1-q^{\ell(p)-r(p)+1}t^{f(p)+1}}, \end{align*}$$

where the product is over all nontrivial pairings p. (These definitions are identical to the corresponding definitions in [Reference Corteel, Mandelshtam and Williams6].) It is now straightforward to check that $\operatorname {\mathrm {wt}}(\sigma )=\operatorname {\mathrm {wt}}(M)$ where $\sigma \in \operatorname {\mathrm {Tab}}(\lambda ,n)$ is the unique $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking filling corresponding to M according to the map described above.

Proposition 5.4. The Macdonald polynomial is given by

$$\begin{align*}P_{\lambda}(X_n;q,t)=\sum_{M\in{\mathrm{MLQ}}_M(\lambda,n)}{\mathrm{wt}}(M)(X_n;q,t) \end{align*}$$

where the sum is taken over Martin’s multiline queues as defined in Definition 5.1.

Remark 5.5. A subtle distinction exists between the multiline queues of [Reference Martin20] described in Definition 5.1 and the multiline queues defined in [Reference Corteel, Mandelshtam and Williams6], which manifests when $\lambda $ is not a strict partition. The difference is in the following: in the multiline queues defined in [Reference Corteel, Mandelshtam and Williams6], for a given row r and set of particles labeled $\ell $ , all particles with an unlabeled particle directly below in row $r-1$ must pair first (necessarily to those particles directly below them). In particular, this disallows the pairings in which there are two particles with the same label at sites $(r,j)$ and $(r-1,j)$ that are not paired to each other. For example, the pairing in Example 5.2 of particles labeled 4 from row 4 to row 3 is allowed in Martin’s multiline queues, but disallowed according to [Reference Corteel, Mandelshtam and Williams6]. Due to this technicality, it has been difficult to define “natural” statistics on tableaux to align the multiline queues from [Reference Corteel, Mandelshtam and Williams6], and there hasn’t been a clear way to see the plethystic relationship between the corresponding multiline queue formula for $P_{\lambda }$ and the $\operatorname {\mathrm {\texttt {quinv}}}$ tableaux formula for $\widetilde {H}_{\lambda }$ .

Consequently, we conjecture an alternative tableaux formula for the ASEP polynomials $f_{\alpha }(X_n;q,t)$ , which form a nonsymmetric decomposition of $P_{\lambda }(X_n;q,t)$ :

$$\begin{align*}P_\lambda(X_n;q,t)=\sum_{\alpha\,:\,{\mathrm{sort}}(\alpha)=\lambda}f_{\alpha}(X_n;q,t).\end{align*}$$

Each polynomial $f_{\alpha }(X_n;q,t)$ coincides with the permuted basement Macdonald polynomial $E^{\tau }_{\operatorname {\mathrm {inc}}(\alpha )}(X_n;q,t)$ , where $\tau $ is any permutation such that $\alpha _{\tau (1)}\leq \alpha _{\tau (2)}\leq \cdots \leq \alpha _{\tau (n)}$ , equivalently, $\tau \cdot \alpha :=(\alpha _{\tau _1},\ldots ,\alpha _{\tau _n})=\operatorname {\mathrm {inc}}(\alpha )$ . See [Reference Corteel, Mandelshtam and Williams6] for details on the ASEP polynomials and [Reference Alexandersson1, Reference Ferreira7] for the general definition of $E_\gamma ^\tau $ .

For a (weak) composition $\alpha =(\alpha _1,\ldots ,\alpha _n)$ with k nonzero parts, define $\beta (\alpha )$ to be the set of words in $\mathbb {Z}_{>0}^k$ that select and reorder the positive parts of $\alpha $ into weakly decreasing order:

$$\begin{align*}\beta(\alpha)=\{\tau_1\cdots \tau_k\in\mathbb{Z}_{>0}^k\,:\ \alpha_{\tau_1}\geq \cdots \geq \alpha_{\tau_k}\}.\end{align*}$$

Each word $\tau _1\cdots \tau _k\in \beta (\alpha )$ can be viewed as the first k entries of a permutation $\tau =\tau _1\cdots \tau _n\in S_n$ such that $\tau \cdot \alpha =\operatorname {\mathrm {sort}}(\alpha )$ . We say a word in $\mathbb {Z}_{>0}^k$ is compatible with $\alpha $ if it belongs to the set $\beta (\alpha )$ . See Example 5.7.

For a filling $\sigma $ , we shall use the notation $r_1(\sigma )$ to denote the bottom row of $\sigma $ .

Conjecture 5.6. Let $\alpha =(\alpha _1,\ldots ,\alpha _n)$ be a composition with $\lambda =\operatorname {\mathrm {sort}}(\alpha )$ . The ASEP polynomial $f_{\alpha }(X_n;q,t)$ is given by

$$\begin{align*}f_{\alpha}(X_n;q,t)=\sum_{\substack{\sigma\in{\mathrm{Tab}}(\lambda,n)\\\sigma\,{\mathrm{coquinv-sorted}}\\r_1(\sigma)\in\beta(\alpha)}}{\mathrm{wt}}(\sigma)(X_n;q,t). \end{align*}$$

where the sum is over all $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted non-attacking tableaux $\sigma $ whose bottom row $r_1(\sigma )$ is compatible with $\alpha $ .

Example 5.7. For instance if $\alpha =(0,2,3,1,0,2,1)$ , then

$$\begin{align*}f_\alpha(X_6;q,t)=E_{(0,0,1,1,2,2,3)}^{\tau}(X_6;q,t),\qquad \tau=(1,5,4,7,2,6,3). \end{align*}$$

The set of words corresponding to partial permutations compatible with $\alpha $ is

$$\begin{align*}\beta(\alpha)=\{3\,2\,6\,4\,7,\ 3\,6\,2\,4\,7,\ 3\,2\,6\,7\,4,\ 3\,6\,2\,7\,4\}. \end{align*}$$

Then $f_\alpha (X_7;q,t)$ is the sum over all $\operatorname {\mathrm {\texttt {coquinv}}}$ -sorted non-attacking fillings $\sigma \in \operatorname {\mathrm {Tab}}((3,2,2,1,1),7)$ with $r_1(\sigma )\in \beta (\alpha )$ .

Remark 5.8. From the proof of Lemma 5.3, we have that $f_{\alpha }(1,\ldots ,1;1,t)$ is equal to the sum on the right-hand side specialized at $X_n=q=1$ . Equality can also be deduced at $t=0$ from comparing to the coinversion-free HHL tableaux formula for $E^{\sigma }_{\operatorname {\mathrm {inc}}(\alpha )}(X_n;q,0)$ . However, for the general case, one would need to show that the nonsymmetric components of the $\operatorname {\mathrm {\texttt {coquinv}}}$ formula are a qKZ family [Reference Corteel, Mandelshtam and Williams6, Definition 1.18], possibly using similar techniques to the proofs in [Reference Corteel, Mandelshtam and Williams6]. It would be interesting to find a combinatorial proof relating the formula of Conjecture 5.6 to the HHL tableaux formula for $E_{\operatorname {\mathrm {inc}}(\alpha )}^\sigma (X_n;q,t)$ .

6 Jack specialization

The Jack polynomials $J_{\lambda }(X;\alpha )$ can be obtained as a limit of $(1-t)^{-|\lambda |}J_{\lambda }(X;t^{\alpha },t)$ with $t\rightarrow 1$ . An elegant tableaux formula was found by Knop and Sahi in [Reference Knop and Sahi14, Theorem 4.10]; this formula was recovered in [Reference Haglund, Haiman and Loehr10, Section 8] by specializing the HHL formula (2.3) for $J_{\lambda }(X;q,t)$ :

(6.1) $$ \begin{align} J_{\lambda}(X;\alpha)=\sum_{\substack{\sigma\in{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\\\sigma{\mathrm{inv-non-attacking}}}}x^{\sigma}\prod_{\substack{u\in\overline{{{\texttt{dg}}}}(\lambda)\\\sigma(u)=\sigma({\mathrm{South}}(u))}} \alpha({{\texttt{leg}}}(u)+1)+{{\texttt{arm}}}(u)+1. \end{align} $$

Knop and Sahi also found an alternative formula for $J_{\lambda }(X;\alpha )$ [Reference Sahi21], although as far as the author is aware, this had not been published. We recover this formula by specializing (2.14) and taking the limit.

Proposition 6.1. The Jack polynomial is given by

(6.2) $$ \begin{align} J_{\lambda}(X;\alpha)=\sum_{\substack{\sigma\in{{\texttt{dg}}}(\lambda)\rightarrow\mathbb{Z}^+\\\sigma{\mathrm{quinv-non-attacking}}}}x^{\sigma}\prod_{\substack{u\in\overline{{{\texttt{dg}}}}(\lambda)\\\sigma(u)=\sigma({\mathrm{South}}(u))}} \alpha({{\texttt{leg}}}(u)+1)+{\mathrm{\widehat{\texttt{arm}}}}(u)+1. \end{align} $$

One observes that just like (2.12) is a more efficient formula than (2.3), (6.2) is more efficient than (6.1) in having fewer terms due to the more restrictive $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking condition.

Example 6.2. The following example demonstrates a computation of $[m_{2,1,1}]J_{3,1}(X;\alpha )$ using both formulas. Below we list all $\operatorname {\mathrm {\texttt {inv}}}$ -non-attacking tableaux and their weights for content $x_1^2x_2x_3$ .

Both formulas sum to $[m_{2,1,1}]J_{3,1}(X;\alpha )=10+6\alpha $ .

We conclude with an open question.

Question 6.3. Is there a statistical mechanics model whose stationary probabilities are proportional to nonsymmetric components of the Jack polynomial? Further, could such a model have dynamics connected to the $\operatorname {\mathrm {\texttt {quinv}}}$ statistic on $\operatorname {\mathrm {\texttt {quinv}}}$ -non-attacking tableaux?

Acknowledgments

We thank Sylvie Corteel, Leonid Petrov, Siddhartha Sahi, Travis Scrimshaw, and Lauren Williams for valuable conversations. We also thank the anonymous referees for helpful comments on the first version of the paper.

Funding Statement

This research was supported by the NSERC grant RGPIN-2021-02568.

Data Availability Statement

N/A

Ethical Standards

The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

Author Contributions

O.M. was the sole author of the manuscript.

Competing interest

The authors have no competing interest to declare.

References

Alexandersson, P., ‘Non-symmetric Macdonald polynomials and Demazure–Lusztig operators’, Sém. Lothar. Combin. 76 (2019), Article B76d.Google Scholar
Ayyer, A., Mandelshtam, O., and Martin, J. B., ‘Modified Macdonald polynomials and the multispecies zero range process: I’, Algebr. Comb. 6(1) (2022), 243284.Google Scholar
Ayyer, A., Mandelshtam, O., and Martin, J. B., ‘Modified Macdonald polynomials and the multispecies zero range process: II’, Math. Z. 308 (2024), Article 31.10.1007/s00209-024-03548-yCrossRefGoogle Scholar
Cantini, L., de Gier, J., and Wheeler, M., ‘Matrix product formula for Macdonald polynomials’, J. Phys. A 48(38) (2015), 384001.10.1088/1751-8113/48/38/384001CrossRefGoogle Scholar
Corteel, S., Haglund, J., Mandelshtam, O., Mason, S., and Williams, L. K., ‘Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials’, Sel. Math. 28(2) (2022), 32.10.1007/s00029-021-00721-7CrossRefGoogle Scholar
Corteel, S., Mandelshtam, O., and Williams, L. K., ‘From multiline queues to Macdonald polynomials via the exclusion process’, Amer. J. Math. 144 (2019), 395436.Google Scholar
Ferreira, J., Row-strict quasisymmetric Schur functions, characterizations of Demazure atoms, and permuted basement nonsymmetric Macdonald polynomials, Ph.D. thesis (2011).Google Scholar
Garsia, A. M. and Haiman, M., ‘Some natural bigraded Sn-modules, and q,t-Kostka coefficients’, Electron. J. Combin. 3(2) (1996), R24.Google Scholar
Haglund, J., The $q$ , $t$ -Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41 (American Mathematical Society, Providence, 2008). With an appendix on the combinatorics of Macdonald polynomials. MR 2371044.Google Scholar
Haglund, J., Haiman, M., and Loehr, N., ‘A combinatorial formula for Macdonald polynomials’, J. Amer. Math. Soc. 18 (2004), 735761.10.1090/S0894-0347-05-00485-6CrossRefGoogle Scholar
Haglund, J., Haiman, M., and Loehr, N., ‘A combinatorial formula for nonsymmetric Macdonald polynomials’, Amer. J. Math. 130(2) (2008), 359383.Google Scholar
Haglund, J., Haiman, M., Loehr, N., Remmel, J. B., and Ulyanov, A., ‘A combinatorial formula for the character of the diagonal coinvariants’, Duke Math. J. 126(2) (2005), 195232.10.1215/S0012-7094-04-12621-1CrossRefGoogle Scholar
Jin, E. Y. and Lin, X., ‘Modified Macdonald polynomials and Mahonian statistics’, Preprint (2024), arXiv:2407.14099v1.Google Scholar
Knop, F. and Sahi, S., ‘A recursion and a combinatorial formula for Jack polynomials’, Invent. Math. 128 (1996), 922.Google Scholar
Lenart, C., ‘On combinatorial formulas for Macdonald polynomials’, Adv. Math. 220(1) (2009), 324340.10.1016/j.aim.2008.09.007CrossRefGoogle Scholar
Loehr, N. and Niese, E., ‘A bijective proof of a factorization formula for specialized Macdonald polynomials’, Ann. Comb. 16(4) (2012), 815828.Google Scholar
Macdonald, I., ‘A new class of symmetric functions’, Sém. Lothar. Combin. 20 (1988), B20a, 41 p.Google Scholar
Mandelshtam, O., ‘New formulas for Macdonald polynomials via the multispecies exclusion and zero range processes’, in Macdonald Theory and Beyond (Orr, Daniel and Wen, Joshua Jeishing, eds.), Contemporary Mathematics, vol. 815 (American Mathematical Society, Providence, RI, 2025), pp. 91114.Google Scholar
Marsh, B. and Rietsch, K., ‘Parametrizations of flag varieties’, Represent. Theory 8 (2004), 212242.Google Scholar
Martin, J. B., ‘Stationary distributions of the multi-type ASEP’, Electron. J. Probab. 25 (2020), 43.10.1214/20-EJP421CrossRefGoogle Scholar
Sahi, S., ‘Personal communication’, (2024)Google Scholar
Figure 0

Figure 1 We show the diagrams of the compositions $\alpha =(2,3,4,1,3,2)$, $\lambda (\alpha )$, and $\operatorname {\mathrm {inc}}(\alpha )$. The cell $u=(2,3)$ has $\operatorname {\mathrm {\texttt {leg}}}(u)$ equal to $2, 1, 0$ in each diagram, respectively.