Hostname: page-component-cb9f654ff-d5ftd Total loading time: 0 Render date: 2025-08-30T00:45:36.634Z Has data issue: false hasContentIssue false

Parisite-(Nd), ideally CaNd2(CO3)3F2, a new mineral from Bayan Obo FeNbREE deposit, Inner Mongolia, China

Published online by Cambridge University Press:  23 December 2024

Chenzi Fan*
Affiliation:
National Research Centre for Geoanalysis, Beijing, China
Hong Yu
Affiliation:
Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, China;
Xiangping Gu
Affiliation:
School of Geosciences and Info-Physics, Central South University, Changsha, China
Pusheng Zeng
Affiliation:
National Research Centre for Geoanalysis, Beijing, China
Zhenyu Chen
Affiliation:
Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, China;
*
Corresponding author: Chenzi Fan; Email: czfan2013@163.com

Abstract

Parisite-(Nd) (IMA2024-013), ideally CaNd2(CO3)3F2, as the Nd-dominant analogue of parisite-(Ce), occurs in dolomitic marble in the Bayan Obo Fe–Nb–REE deposit, Inner Mongolia, China. It is associated with calcite, aegirine, magnetite, hematite, fluorite, riebeckite, bastnäsite-(Ce), baryte, aeschynite-(Ce), aeschynite-(Nd), monazite and parisite-(Ce). Parisite-(Nd) occurs as subhedral to anhedral irregular grains from 0.02 mm to 1 mm. Parisite-(Nd) is transparent, yellowish-brown colour, with pale yellow streak and displays vitreous to resinous lustre. Cleavage is distinct on pseudo-{001}; fracture is uneven, or conchoidal. The Mohs hardness is 4 to 5, and it is brittle. The calculated density of parisite-(Nd) is 4.357 g/cm3. Parisite-(Nd) is pseudo-uniaxial (+), ω = (1.679) and ε = (1.754). The empirical formula is (Ca0.945Fe0.058Sr0.015Ba0.007)Σ1.025(Nd0.967Ce0.529La0.191Pr0.137Gd0.070Sm0.029Th0.022Y0.016Nb0.011Ho0.003)Σ1.975(CO3)3F1.893OH0.023. The Raman spectra of parisite-(Nd) show strong and sharp peaks at 1113, 1090, 825, 635 and 1608 cm–1 and moderate to weak bands centred at 255, 392, 739, 924, 1183, 1228, 1296, 1640, 2247, 2924 and 3065 cm–1. Powder X-ray diffraction and TEM studies give the following results: monoclinic, space group: Cc (# 9), a = 12.3283(13) Å, b = 7.1185(4) Å, c = 28.4633(37) Å, β = 98.529(14)°, V = 2470.28(42) Å3 and Z = 12.

Information

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Mihoko Hoshino

References

Capitani, G. (2019) HRTEM investigation of bastnäsite–parisite intergrowths from Mount Malosa (Malawi): Ordered sequences, polysomatic faults, polytypic disorder, and a new parisite-(Ce) polymorph. European Journal of Mineralogy, 31, 429442.10.1127/ejm/2019/0031-2824CrossRefGoogle Scholar
Capitani, G. (2020) Synchysite-(Ce) from Cinquevalli (Trento, Italy): stacking disorder and the polytypism of (Ca, REE)-fluorcarbonates. Minerals, 10, 77.10.3390/min10010077CrossRefGoogle Scholar
Castor, S.B. (2008) The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. The Canadian Mineralogist, 46, 779806.10.3749/canmin.46.4.779CrossRefGoogle Scholar
Ciobanu, C.L., Kontonikas-Charos, A., Slattery, A., Cook, N.J., Ehrig, K. and Wade, B.P. (2017) Short-range stacking disorder in mixed-layer compounds: A HAADF STEM study of bastnäsite-parisite intergrowths. Minerals, 7, 227.10.3390/min7110227CrossRefGoogle Scholar
Donnay, G. and Donnay, J.D.H. (1953) The crystallography of bastnäsite, parisite, roentgenite, and synchisite. American Mineralogist: Journal of Earth and Planetary Materials, 38, 932963.Google Scholar
Doroshkevich, A.G., Viladkar, S.G., Ripp, G.S. and Burtseva, M.V. (2009) Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. The Canadian Mineralogist, 47, 11051116.10.3749/canmin.47.5.1105CrossRefGoogle Scholar
Fan, C., Yu, H., Gu, X., Zeng, P. and Chen, Z. (2024) Parisite-(Nd), IMA 2024-013. CNMNC Newsletter 80. European Journal of Mineralogy, 36. https://doi.org/10.5194/ejm-36-599-2024Google Scholar
Frost, R.L. and Dickfos, M.J. (2007) Raman spectroscopy of halogen‐containing carbonates. Journal of Raman Spectroscopy, 38, 15161522.10.1002/jrs.1806CrossRefGoogle Scholar
Frost, R.L., López, A., Scholz, R., Xi, Y. and Belotti, F.M. (2013) Infrared and Raman spectroscopic characterization of the carbonate mineral huanghoite – and in comparison with selected rare earth carbonates. Journal of Molecular Structure, 1051, 221225.10.1016/j.molstruc.2013.07.051CrossRefGoogle Scholar
Guastoni, A., Kondo, D. and Nestola, F. (2010) Bastnäsite-(Ce) and Parisite-(Ce) From Mt. Malosa, Malawi. Gems & Gemology, 46, 4247.10.5741/GEMS.46.1.42CrossRefGoogle Scholar
Hålenius, U., Hatert, F., Pasero, M. and Mills, S.J. (2016) New minerals and nomenclature modifications approved in 2016. Newsletter 32. IMA No. 2016-031. Mineralogical Magazine, 80, 920921.Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.10.1180/minmag.1997.061.404.07CrossRefGoogle Scholar
Jambor, J.L., Burke, E.A., Ercit, T.S. and Grice, J.D. (1988) New mineral names. American Mineralogist, 73, 14961497.Google Scholar
Ling, M.X., Liu, Y.L., Williams, I.S., Teng, F.Z., Yang, X.Y., Ding, X., Wei, G.J., Xie, L.H., Deng, W.F. and Sun, W.D. (2013) Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Scientific Reports, 3, 1776.10.1038/srep01776CrossRefGoogle Scholar
Liu, T., Song, W., Kynicky, J., Yang, J., Chen, Q. and Tang, H. (2022) Automated quantitative characterization REE ore mineralogy from the giant Bayan Obo Deposit, Inner Mongolia, China. Minerals, 12, 426.10.3390/min12040426CrossRefGoogle Scholar
Menezes Filho, L.A., Chaves, M.L., Chukanov, N.V., Atencio, D., Scholz, R., Pekov, I., da Costa, G.M., Morrison, S.M., Andrade, M.B., Freitas, E.T.F., Downs, R.T. and Belakovskiy, D.I. (2018) Parisite-(La), ideally CaLa2(CO3)3F2, a new mineral from Novo Horizonte, Bahia, Brazil. Mineralogical Magazine, 82, 133144.10.1180/minmag.2017.081.028CrossRefGoogle Scholar
Meng, D., Wu, X., Mou, T. and Li, D. (2001a) Determination of six new polytypes in parisite-(Ce) by means of high resolution electron microscopy. Mineralogical Magazine, 65, 797806.Google Scholar
Meng, D., Wu, X., Mou, T. and Li, D. (2001b) Microstructural investigation of new polytypes of parisite-(Ce) by high-resolution transmission electron microscopy. The Canadian Mineralogist, 39, 17131724.10.2113/gscanmin.39.6.1713CrossRefGoogle Scholar
Mineev, D.A., Lavrischeva, T.I. and Bykova, A.V. (1970) Yttrian bastnaesite-an alteration product of gagarinite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 99, 328332.Google Scholar
Miyawaki, R., Yokoyama, K. and Husdal, T.A. (2013) Bastnäsite-(Nd), a new Nd-dominant member of the bastnäsite group from the Stetind pegmatite, Tysfjord, Nordland, Norway. European Journal of Mineralogy, 25, 187191.10.1127/0935-1221/2013/0025-2265CrossRefGoogle Scholar
Morteani, G. (1991) The rare earths; their minerals, production and technical use. European Journal of mineralogy, 3, 641650.10.1127/ejm/3/4/0641CrossRefGoogle Scholar
Ni, Y., Hughes, J.M. and Mariano, A.N. (1993) The atomic arrangement of bastnäsite-(Ce), Ce(CO3)F, and structural elements of synchysite-(Ce), röntgenite-(Ce), and parisite-(Ce). American Mineralogist, 78, 415418.Google Scholar
Ni, Y., Post, J.E. and Hughes, J.M. (2000) The crystal structure of parisite-(Ce), Ce2CaF2(CO3)3. American Mineralogist, 85, 251258.10.2138/am-2000-0126CrossRefGoogle Scholar
Nie, F.J., Jiang, S.H., Su, X.X. and Wang, X. L. (2002) Geological features and origin of gold deposits occurring in the Baotou–Bayan Obo district, south-central Inner Mongolia, People’s Republic of China. Ore Geology Reviews, 20, 139169.10.1016/S0169-1368(02)00069-0CrossRefGoogle Scholar
Palache, C., Berman, H. and Frondel, C. (1951) Dana’s system of mineralogy, 7th edition, v. II. John Wiley & Sons, New York, pp. 289291.Google Scholar
Palmer, D.C. (2015) Visualization and analysis of crystal structures using CrystalMaker software. Zeitschrift für Kristallographie – Crystalline Materials, 230, 559572.10.1515/zkri-2015-1869CrossRefGoogle Scholar
Ren, Y., Zhang, Y. and Zhang, Z. (1994) Study on heat events of ore forming in the Bayan Obo deposit. Acta Geoscience Sinica, 30, 95101 [in Chinese with English abstract].Google Scholar
Scharm, B. and Kühn, P. (1983) Synchysite-(Nd), Ca (Nd,Y,Gd), a new mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 1983, 201.Google Scholar
Seifert, W., Kämpf, H. and Wasternack, J. (2000) Compositional variation in apatite, phlogopite and other accessory minerals of the ultramafic Delitzsch complex, Germany: implication for cooling history of carbonatites. Lithos, 53, 81100.10.1016/S0024-4937(00)00010-4CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.10.1107/S0567739476001551CrossRefGoogle Scholar
Smith, M.P. (2007) Metasomatic silicate chemistry at the Bayan Obo Fe–REE–Nb deposit, Inner Mongolia, China: contrasting chemistry and evolution of fenitising and mineralising fluids. Lithos, 93, 126148.10.1016/j.lithos.2006.06.013CrossRefGoogle Scholar
Smith, W.L., Stone, J., Ross, D.R. and Levine, H. (1960) Doverite [= synchysite-(Y)], a possible new yttrium fluocarbonate from Dover, Morris Co., New Jersey. American Mineralogist, 45, 9298.Google Scholar
Vainshtein, E.E., Pozharitskaya, L.K. and Turanskaya, N.V. (1961) Behavior of rare earths in the process of carbonatite formation. Geokhimiya, 11, 10311034 [in Russian].Google Scholar
Van Landuyt, J. and Amelinckx, S. (1975) Multiple beam direct lattice imaging of new mixed-layer compounds of the bastnaesite-synchisite series. American Mineralogist: Journal of Earth and Planetary Materials, 60, 351358.Google Scholar
Wang, L., Ni, Y. and Hughes, J.M. (1994) The atomic arrangement of synchysite-(Ce), CeCaF(CO3)2. The Canadian Mineralogist, 32, 865871.Google Scholar
Warren, C.H. and Palache, C. (1911) The pegmatites of the riebeckite-aegirite granite of Quincy, Mass., USA; their structure, minerals, and origin. Proceedings of the American Academy of Arts and Sciences, 47, 125168.10.2307/20022716CrossRefGoogle Scholar
White, W.B. (1974) The carbonate minerals. Pp 227284 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society Monograph, vol 4. Mineralogical Society of Great Britain and Ireland, London.10.1180/mono-4.12CrossRefGoogle Scholar
Wu, X.L. and Meng, D.W. (2000) Study on microstructure and ultrastructure of calcium-cerium fluoride carbonate minerals by transmission electron microscopy. China University of Geosciences Press, Wuhan, China [in Chinese].Google Scholar
Wu, X., Meng, D., Pan, Z., Yang, G. and Li, D. (1998) Transmission electron microscopic study of new, regular, mixed-layer structures in calcium-rare-earth fluorocarbonate minerals. Mineralogical Magazine, 62, 5564.Google Scholar
Xie, Y.L., Qu, Y.W., Yang, Z.F., Liang, P., Zhong, R.C., Wang, Q.W., Xia, J.M. and Li, B.C. (2019) Giant Bayan Obo Fe-Nb-REE deposit: progresses, controversaries and new understandings. Mineral Deposits, 38, 9831003 [in Chinese].Google Scholar
Yang, J., Song, W., Liu, Y., Zhu, X., Kynicky, J. and Chen, Q. (2024) Mineralogy and element geochemistry of the Bayan Obo (China) carbonatite dykes: Implications for REE mineralization. Ore Geology Reviews, 105873.10.1016/j.oregeorev.2024.105873CrossRefGoogle Scholar
Yang, X., Lai, X., Pirajno, F., Liu, Y., Mingxing, L. and Sun, W. (2017) Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, north China craton: a perspective review. Precambrian Research, 288, 3971.10.1016/j.precamres.2016.11.008CrossRefGoogle Scholar
Yuan, Z.X. (2012) Discussion on the metallogenic age and genesis of Bayan Obo deposit. Acta Geologica Sinica, 86, 683686 [in Chinese].Google Scholar
Zeug, M., Nasdala, L., Ende, M., Habler, G., Hauzenberger, C., Chanmuang, N.C., Škoda, R., Topa, D., Wildner, M. and Wirth, R. (2021) The parisite-(Ce) enigma: challenges in the identification of fluorcarbonate minerals. Mineralogy and Petrology, 115, 119.10.1007/s00710-020-00723-xCrossRefGoogle Scholar
Zhang, P.S., and Tao, K.J. (1986) Bayan Obo Mineralogy. Science Publisher, Beijing, China. 208 pp. [in Chinese with English summary].Google Scholar
Zhu, X.K., Sun, J. and Pan, C. (2015) Sm-Nd isotopic constraints on rare-earth mineralization in the Bayan Obo ore deposit, Inner Mongolia, China. Ore Geology Reviews, 64, 543553.10.1016/j.oregeorev.2014.05.015CrossRefGoogle Scholar
Supplementary material: File

Fan et al. supplementary material

Fan et al. supplementary material
Download Fan et al. supplementary material(File)
File 24 KB