Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-19T04:25:41.531Z Has data issue: false hasContentIssue false

Selenolaurite, RuSe2, a new mineral from the Ingul gold placer, South Urals, Russia

Published online by Cambridge University Press:  15 January 2025

Elena V. Belogub*
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology, Urals Branch of Russian Academy of Science, Miass, 456317, Russia Saint-Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
Sergey N. Britvin
Affiliation:
Saint-Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia Nanomaterials Research Center, Kola Science Center of the Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia;
Vladimir V. Shilovskikh
Affiliation:
Saint-Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
Leonid A. Pautov
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Sciences, Leninsky ave. 182, Moscow, 115162, Russia
Vasiliy A. Kotlyarov
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology, Urals Branch of Russian Academy of Science, Miass, 456317, Russia
Maria G. Krzhizhanovskaya
Affiliation:
Saint-Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
Konstantin A. Novoselov
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology, Urals Branch of Russian Academy of Science, Miass, 456317, Russia
Elisaveta V. Zaykova
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology, Urals Branch of Russian Academy of Science, Miass, 456317, Russia
Ivan A. Blinov
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology, Urals Branch of Russian Academy of Science, Miass, 456317, Russia
*
Corresponding author: Elena V. Belogub; Email: belogub_e@yahoo.com

Abstract

Selenolaurite, ideally RuSe2, is a new mineral, the first natural ruthenium selenide. It was discovered in an assemblage with Se-bearing moncheite. Both form xenomorphic inclusions in the crystal aggregates of Os–Ir–Ru minerals found at the Ingul gold placer, Urals, Russia. In addition a mineral with selenolaurite composition was found as a euhedral inclusion within grains of Pt–Fe alloy with isoferroplatinum composition at the Kazan gold placer. These placers are situated in the Chelyabinsk district, South Urals, Russia. The selenolaurite from the Ingul placer forms interstitial grains with maximum size of section of 0.05–0.1 mm. Crystals of the selenolaurite from the Kazan placer reach 20 µm in size. Selenolaurite is grey with metallic lustre and is isotropic. Reflectance values [R (%) for COM approved wavelengths (nm)] are 45.8(470), 44.3(546), 43.8(589) and 43.1(650). The chemical composition of the holotype from the Ingul placer corresponds to the empirical formula (Ru0.99Ir0.05)Σ1.04(Se1.92Te0.03S0.01)Σ1.96. Selenolaurite is the selenium-dominant analogue of laurite, RuS2 with a pyrite-type structure. It is cubic, space group Pa, a = 5.9424(2) Å, V = 209.84 2) Å3, Z = 4 and Dcalc. = 8.415 g·cm–3 (calculated on the basis of empirical formula and unit-cell parameters refined by the Rietveld method). The crystal structure has been refined from the powder data to RB = 0.0067. The strongest lines of the powder X-ray diffraction pattern [d(Å), (I), (hkl)] are: 3.434(41)(111), 2.973(90)(200), 2.6580(100)(210), 2.4264(84)(211) and 1.7913(87)(311). The possible sources of a Ru–Se mineralisation in the South Urals are ophiolitic ultramafic rocks enriched in Ru and depleted with sulfur.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: František Laufek

Deceased

References

Airiyants, E.V., Belyanin, D.K., Zhmodik, S.M., Agafonov, L.V. and Romashkin, P.A. (2020) Chemical composition and origin of platinum-group minerals from placers of the Aunik River, Buryatia, Russia. Ore Geology Reviews, 120, 103453.Google Scholar
Airiyants, E.V., Kiseleva, O.N., Zhmodik, S.M., Belyanin, D.K. and Ochirov, Y.C. (2022) Platinum-group minerals in the Placer of the Kitoy River, East Sayan, Russia. Minerals, 12, 21. doi:10.3390/min12010021Google Scholar
Barkov, A.Y., Nikiforov, A.A., Tolstykh, N.D., Shvedov, G.I. and Korolyuk, V.N. (2017) Compounds of Ru-Se-S, alloys of Os-Ir, framboidal Ru nanophases, and laurite-clinochlore intergrowths in the Pados-Tundra complex, Kola Peninsula, Russia. European Journal of Mineralogy, 29, 613621.Google Scholar
Barkov, A.Y., Nikulin, I.I., Nikiforov, A.A., Lobastov, B.M., Silyanov, S.A. and Martin, R.F. (2021) Atypical mineralization involving Pd-Pt Au-Ag REE Y Zr Th U and Cl-F in the Oktyabrsky Deposit Norilsk Complex, Russia. Minerals, 11, 1193. doi:10.3390/min11111193Google Scholar
Belogub, E.V., Zaykova, E.V., Kotlyarov, V.A., Shilovskikh, V.V., Britvin, S.N. and Pautov, L.A. (2019) Selenium in the minerals of the platinum group minerals from gold placer of the South Urals. Mineralogical museums: Conference material. Sain-Petersburg SPbU, pp. 8789 [in Russian].Google Scholar
Belogub, E.V., Britvin, S.N., Shilovskikh, V.V., Pautov, L.A., Kotlyarov, V.A., Krzhizhanovskaya, M.G., Novoselov, K.A., Zaykova, E.V. and Blinov, I.A. (2020) Selenolaurite, IMA 2020-027. CNMNC Newsletter No. 56. Mineralogical Magazine, 84. doi:10.1180/mgm.2020.60Google Scholar
Belogub, E.V., Britvin, S.N., Shilovskikh, V.V., Pautov, L.A., Kotlyarov, V.A. and Zaykova, E.V. (2023) Zaykovite Rh3Se4 a new mineral from the Kazan placer South Urals Russia. Mineralogical Magazine, 87, 118129. doi:10.1180/mgm.2022.122Google Scholar
Bowles, J.F.W., Atkin, D., Lambert, L.M., Deans, T. and Phillips, R. (1983) The chemistry, reflectance, and cell size of the erlichmanite (OsS2) – laurite series. Mineralogical Magazine, 47, 465471.Google Scholar
Cabri, L.J., Oberthür, T. and Keays, R. (2022) Origin and depositional history of platinum-group minerals in placers – A critical review of facts and fiction. Ore Geology Reviews, 144, 104733. doi:10.1016/j.oregeorev.2022.104733Google Scholar
Clarke, M.J. (2003) Ruthenium metallopharmaceuticals. Coordination Chemistry Reviews, 236, 209233.Google Scholar
Cook, N.J., Wood, S.A., Gebert, W., Bernhardt, H.J. and Medenbach, O. (1994) Crerarite, a new Pt-Bi-Pb-S mineral from the Cu-Ni-PGE deposit at Lac Sheen, Abitibi-Temiscaminque, Quebec, Canada. Neues Jahrbuch für Mineralogie, Monatshefte, 1994, 567575.Google Scholar
Criddle, A.J. and Stanley, C.J. (editors) (1986) The Quantitative Data File for Ore Minerals of the Commission on Ore Microscopy of the International Mineralogical Association (2nd edition). British Museum of Natural History, London, 420 pp.Google Scholar
Davis, R.J., Clark, A.M. and Criddle, A.J. (1977) Palladseite, a new mineral from ltabira, Minas Gerais, Brazil. Mineralogical Magazine, 41, 123.Google Scholar
Greenwood, N.N. and Earnshaw, A. (1997) Iron, ruthenium and osmium. Pp. 10701112 in: Chemistry of the Elements. Second edition,Reed Educational and Professional Publishing Ltd.Google Scholar
Jebwab, J., Cervelle, B., Gouet, G., Hubaut, X. and Piret, P. (1992) The new platinum selenide luberoite Pt5Se4 from the Lubero region (Kivu Province, Zaire). European Journal of Mineralogy, 4, 683692.Google Scholar
Johan, Z., Picot, P. and Pierrot, R. (1970) L’oosterboschite (Pd,Cu)7Se5, une nouvelle espèce minérale et la trogtalite cupro-palladifère de Musonoï (Katanga). Bulletin de la Société française de Minéralogie et de Cristallographie, 93, 476481.Google Scholar
Juza, R. and Meyer, W. (1933) Beiträge zur systematischen Verwandtschaftslehre. 59. Über die Sulfide des Rutheniums. Zeitschrift für anorganische und allgemeine Chemie, 213, 273282.Google Scholar
Krivovichev, V.G. (2021) Mineral species. St. Petersburg University Publishing House, 599 pp. [In Russian].Google Scholar
Leonard, B.F. and Desborough, G.A. (1969) Ore microscopy and chemical composition of some laurites. American Mineralogist, 54, 13301346.Google Scholar
Levy, C. and Picot, P. (1961) Nouvelles donnees sur les composes iridium-osmium. Existence de l’osmium natif. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 84, 312317.Google Scholar
Lorand, J.-P. and Luguet, A. (2016) Chalcophile and siderophile elements in mantle rocks: trace elements controlled by trace minerals. Reviews in Mineralogy & Geochemistry, 81, 441488. doi:10.2138/rmg.2016.81.08Google Scholar
Lutz, H.D., Müller, B., Schmidt, T. and Stingl, T. (1990) Structure refinement of pyrite-type ruthenium disulfide RuS2 and ruthenium diselenide, RuSe2. Acta Crystallographica, C46, 20032005.Google Scholar
Mason, J. and Schuh, C. (2009) Representations of texture. Pp. 3551 in: Electron Backscatter Diffraction In Materials Science (Schwartz, A.J., Kumar, M., Adams, B.L. and Field, D.P editors). Springer.Google Scholar
Naldrett, A. (2004) Magmatic sulphide deposits – Geology, geochemistry and exploration. Springer-Verlag, Berlin, pp. 728.Google Scholar
O’Driscoll, B. and J.M, González-Jiménez. (2016) Petrogenesis of the platinum-group minerals. Reviews in Mineralogy & Geochemistry, 81, 489578. doi:10.2138/rmg.2016.81.09Google Scholar
Ovchinnikov, L.N. (1990) Approximate Geochemistry. Nedra, Moscow, 348 pp [in Russian].Google Scholar
Oydup, Ch.K., Mongush, A.A. and Khuragan, Ch.M. (2012) Typomorphic features of the minerals of platinum group in the Kundus gold placer (KaaKhem ophiolitic belt, Tyva). Russian lithology and raw materials, 5, 490498 [in Russian].Google Scholar
Paar, W.H., Roberts, A.C., Criddle, A.J. and Topa, D. (1998) A new mineral, chrisstanleyite, Ag2Pd3Se4, from Hope’s Nose, Torquay, Devon, England. Mineralogical Magazine, 62, 257264.Google Scholar
Patten, C., Barnes, S-J., Mathez, E.A. and Jenner, F.E. (2013) Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology, 358, 170188.Google Scholar
Polekhovskiy, Y.S., Tarasova, I.P., Nesterov, A.P., Pakhomovskiy, Y.A. and Bakhchisaraitsev, A.Y. (1997) Sudovikovite PtSe2 – a new platinum selenide from Karelia metasomite. Doklady Akademii Nauk, 354, 8285 [in Russian].Google Scholar
Rassomakhin, M.A. and Zaykov, V.V. (2017) Composition of the platinoids of Ingul Placer (South Urals). Metallogeny of the ancient and modern oceans – 2017, 1, 119123 [in Russian].Google Scholar
Reith, F., Zammit, C.-M., Shar, S.S., Etschmann, B., Bottrill, R., Southam, G., Ta, C., Kilburn, M., Oberthür, T. and Ball, A.S. (2016) Biological role in the transformation of platinum-group-mineral grains. Nature Geoscience, 9, 294298.Google Scholar
Roberts, A.C., Paar, W.H., Cooper, M.A., Topa, D., Criddle, A.J. and Jedwab, J. (2002) Verbeekite, monoclinic PdSe2, a new mineral from the Musonoi Cu-Co-Mn-U mine, near Kolwezi, Shaba Province, Democratic Republic of Congo. Mineralogical Magazine, 66, 173179.Google Scholar
Roberts, W.L., Campbell, T. and Rapp, G.R. Jr. (1990) Encyclopedia of Minerals. 2th edition, Van Nostrand Reinhold Co., New York.Google Scholar
Stepanov, S.Yu., Palamarchuk, R.S., Kozlov, A.V., Khanin, D.A., Varlamov, D.A., and Kiseleva, D.V. (2019) Platinum-group minerals of Pt-placer deposits associated with the Svetloborsky Uralian-Alaskan type massif, Middle Urals, Russia. Minerals, 9, 77.Google Scholar
Stepanov, S.Yu., Palamarchuk, R.S., Antonov, A.V., Kozlov, A.V., Varlamov, D.A., Khanin, D.A. and Zolotarev, Jr., A.A. (2020) Morphology, Composition, and Ontogenesis of Platinum-group minerals in chromitites of zoned clinopyroxenite-dunite massifs of the Middle Urals. Russian Geology and Geophysics, 61, 4767. doi:10.15372/RGG2019089.Google Scholar
Sutarno, O.K and Reid, K.I.G. (1967) Chalcogenides of the transition elements. V. Crystal structures of the disulfides and ditellurides of ruthenium and osmium. Canadian Journal of Chemistry, 45, 13911400. doi:10.1139/v67-230Google Scholar
Tolstykh, N.D., Krivenko, A.P. and Pospelova, L.N. (1997) Unusual compounds of iridium, osmium, and ruthenium with selenium, tellurium and arsenic from the placers of the Zolotaya River (western Sayan). Notes of the All-Russian Mineralogical Society, 126, 2334 [in Russian].Google Scholar
Vymazalová, A., Laufek, F., Drábek, M., Cabral, A.R., Haloda, J., Sidorinová, T., Lehmann, B., Galbiatti, H.F., and Drahokoupil, J. (2012) Jacutingaite, Pt2HgSe3, a new platinum-group mineral species from the Cauê iron-ore deposit, Itabira district, Minas Gerais, Brazil. The Canadian Mineralogist, 50, 431440.Google Scholar
Wöhler, F. (1866) Ueber ein neues mineral von Bornéo. Nachrichten von der Königliche Gesellschaft der Wissenschaftern und der Georg-Augusts-Universität, 1866, 155160.Google Scholar
Zaccarini, F., Pushkarev, E., Fershtater, G. and Garuti, G. (2004) Composition and mineralogy of PGE-rich chromitites in the Nurali lherzolite gabbro complex, Southern Urals, Russia. The Canadian Mineralogist, 42(2), 545562. doi:10.2113/gscanmin.42.2.545.Google Scholar
Zaccarini, F., Garuti, G., Pushkarev, E. and Thalhammer, O. (2018) Origin of platinum group minerals (PGM) inclusions in chromite deposits of the Urals. Minerals, 8, 379. doi:10.3390/min8090379Google Scholar
Zaccarini, F., Economou-Eliopoulos, M., Kiseleva, O., Garuti, G., Tsikouras, B., Pushkarev, E. and Idrus, A. (2022) Platinum Group Elements (PGE) Geochemistry and mineralogy of low economic potential (Rh-Pt-Pd)-rich chromitites from ophiolite complexes. Minerals, 12, 1565. doi:10.3390/min12121565Google Scholar
Zaykov, V.V., Zaykova, E.V., Blinov, I.A., Oydup, Ch.K. and Mongush, A.A. (2014) Platinoids from the gold placer of Kundus river (Tuva). Materials of the Urals mineralogical school, 2014, 6976.Google Scholar
Zaykov, V.V., Melekestseva Yu, I.., Zaykova, E.V., Kotlyarov, V.A. and Kraynev, Yu.D. (2017) Gold and platinum group minerals in placers of the South Urals: Composition, microinclusions of ore minerals and primary sources. Ore geology reviews, 85, 299320.Google Scholar
Zaykov, V.V., Saveliev, D.E. and Zaykova, E.V. (2018) Nature of chrome spinel inclusions in platinum metals grains from South Urals gold placers. Notes of the All-Russian Mineralogical Society, 147, 2740 [in Russian]. doi:10.30695/zrmo/2018.1475.02.Google Scholar
Zaykova, E.V., Blinov, I.A. and Kotlyarov, V.A. (2020) Mineral inclusions in platinum grains from the Kazan placer (South Urals). Mineralogy, 6(1). doi:10.35597/2313-545X-2020-6-1-3.Google Scholar
Zhao, H., Schils, H.W. and Raub, Ch.J. (1985) Untersuchungen im system ruthenium-selen-tellur. Journal of the Less Common Metals, 113, 7582.Google Scholar
Supplementary material: File

Belogub et al. supplementary material

Belogub et al. supplementary material
Download Belogub et al. supplementary material(File)
File 5.9 KB