Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-10-07T18:49:42.077Z Has data issue: false hasContentIssue false

Chapter 10 - Human–AI Collaboration for Scientific Discovery

Published online by Cambridge University Press:  19 September 2025

Dan Wu
Affiliation:
Wuhan University, China
Shaobo Liang
Affiliation:
Wuhan University, China
Get access

Summary

Nowadays, artificial intelligence (AI) is becoming a powerful tool to process huge volumes of data generated in scientific research and extract enlightening insights to drive further explorations. The recent trend of human-in-loop AI has promoted the paradigm shift in scientific research by enabling the interactive collaboration between AI models and human experts. Inspired by these advancements, this chapter explores the transformative role of AI in accelerating scientific discovery across various disciplines such as mathematics, physics, chemistry, and life sciences. It provides a comprehensive overview of how AI is reshaping the scientific research – enabling more efficient data analysis, enhancing predictive modeling, and automating experimental processes. Through the examination of case studies and recent developments, this chapter underscores AI’s potential to revolutionize scientific discovery, providing insights into current applications and future directions. It also addresses the ethical challenges associated with AI in science. Through this comprehensive analysis, the chapter aims to provide a nuanced understanding of how AI is facilitating scientific discovery and its potential to accelerate innovations while maintaining rigorous ethical standards.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Andreassen, A., Komiske, P. T., Metodiev, E. M., Nachman, B., & Thaler, J. (2020). OmniFold: A Method to Simultaneously Unfold All Observables. Physical Review Letters, 124(18), 182001.Google ScholarPubMed
Baum, Z. J., Yu, X., Ayala, P. Y., Zhao, Y., Watkins, S. P., & Zhou, Q. (2021). Artificial Intelligence in Chemistry: Current Trends and Future Directions. Journal of Chemical Information and Modeling, 61(7), 31973212.10.1021/acs.jcim.1c00619CrossRefGoogle Scholar
Burger, B., Maffettone, P. M., Gusev, V. V., Aitchison, C. M., Bai, Y., Wang, X., … & Cooper, A. I. (2020). A Mobile Robotic Chemist. Nature, 583(7815), 237241.10.1038/s41586-020-2442-2CrossRefGoogle ScholarPubMed
Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., … & Marchini, J. (2018). The UK Biobank Resource with Deep Phenotyping and Genomic Data. Nature, 562(7726), 203209.10.1038/s41586-018-0579-zCrossRefGoogle ScholarPubMed
Chatrchyan, S., Khachatryan, V., Sirunyan, A. M., Tumasyan, A., Adam, W., Aguilo, E., … & Damiao, D. D. J. (2012). Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Physics Letters B, 716(1), 3061.10.1016/j.physletb.2012.08.021CrossRefGoogle Scholar
Coley, C. W., Eyke, N. S., & Jensen, K. F. (2020). Autonomous Discovery in the Chemical Sciences Part II: Outlook. Angewandte Chemie International Edition, 59(52), 2341423436.10.1002/anie.201909989CrossRefGoogle ScholarPubMed
Coley, C. W., Thomas, D. A. III, Lummiss, J. A., Jaworski, J. N., Breen, C. P., Schultz, V., … & Jensen, K. F. (2019). A Robotic Platform for Flow Synthesis of Organic Compounds Informed by AI Planning. Science, 365(6453), eaax1566.10.1126/science.aax1566CrossRefGoogle ScholarPubMed
Constantinou, L., & Gani, R. (1994). New Group Contribution Method for Estimating Properties of Pure Compounds. AIChE Journal, 40(10), 16971710.10.1002/aic.690401011CrossRefGoogle Scholar
Cremer, J., Medrano Sandonas, L., Tkatchenko, A., Clevert, D. A., & De Fabritiis, G. (2023). Equivariant Graph Neural Networks for Toxicity Prediction. Chemical Research in Toxicology, 36(10), 15611573.Google ScholarPubMed
Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., … & Kohli, P. (2021). Advancing Mathematics by Guiding Human Intuition with AI. Nature, 600(7887), 7074.CrossRefGoogle ScholarPubMed
Davis, R., Buchanan, B., & Shortliffe, E. (1977). Production Rules as a Representation for a Knowledge-based Consultation Program. Artificial Intelligence, 8(1), 1545.10.1016/0004-3702(77)90003-0CrossRefGoogle Scholar
Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., … & Riedmiller, M. (2022). Magnetic Control of Tokamak Plasmas through Deep Reinforcement Learning. Nature, 602(7897), 414419.10.1038/s41586-021-04301-9CrossRefGoogle ScholarPubMed
DeZoort, G., Battaglia, P. W., Biscarat, C., & Vlimant, J. R. (2023). Graph Neural Networks at the Large Hadron Collider. Nature Reviews Physics, 5(5), 281303.10.1038/s42254-023-00569-0CrossRefGoogle Scholar
Dias, R., & Torkamani, A. (2019). Artificial Intelligence in Clinical and Genomic Diagnostics. Genome Medicine, 11(1), 70.Google ScholarPubMed
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … & Houlsby, N. (2021). An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. International Conference on Learning Representations, 9, 121.Google Scholar
Feigenbaum, E. A., Buchanan, B. G., & Lederberg, J. (1970). On Generality and Problem Solving: A Case Study using the DENDRAL Program (No. NASA-CR-123182).Google Scholar
Fletcher, T. L., Davie, S. J., & Popelier, P. L. (2014). Prediction of Intramolecular Polarization of Aromatic Amino Acids using Kriging Machine Learning. Journal of Chemical Theory and Computation, 10(9), 37083719.10.1021/ct500416kCrossRefGoogle ScholarPubMed
Gertrudes, J. C., Maltarollo, V. G., Silva, R. A., Oliveira, P. R., Honorio, K. M., & Da Silva, A. B. F. (2012). Machine Learning Techniques and Drug Design. Current Medicinal Chemistry, 19(25), 42894297.10.2174/092986712802884259CrossRefGoogle ScholarPubMed
Goenka, S. D., Gorzynski, J. E., Shafin, K., Fisk, D. G., Pesout, T., Jensen, T. D., … & Ashley, E. A. (2022). Accelerated Identification of Disease-causing Variants with Ultra-rapid Nanopore Genome Sequencing. Nature Biotechnology, 40(7), 10351041.10.1038/s41587-022-01221-5CrossRefGoogle ScholarPubMed
Han, R., Yoon, H., Kim, G., Lee, H., & Lee, Y. (2023). Revolutionizing Medicinal Chemistry: The Application of Artificial Intelligence (AI) in Early Drug Discovery. Pharmaceuticals, 16(9), 1259.10.3390/ph16091259CrossRefGoogle ScholarPubMed
Harrison, J. (2013). The HOL Light Theory of Euclidean Space. Journal of Automated Reasoning, 50, 173190.10.1007/s10817-012-9250-9CrossRefGoogle Scholar
Holzinger, A., Keiblinger, K., Holub, P., Zatloukal, K., & Müller, H. (2023). AI for Life: Trends in Artificial Intelligence for Biotechnology. New Biotechnology, 74, 1624.10.1016/j.nbt.2023.02.001CrossRefGoogle ScholarPubMed
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., … & Hassabis, D. (2021). Highly Accurate Protein Structure Prediction with AlphaFold. Nature, 596(7873), 583589.CrossRefGoogle ScholarPubMed
Karagiorgi, G., Kasieczka, G., Kravitz, S., Nachman, B., & Shih, D. (2022). Machine Learning in the Search for New Fundamental Physics. Nature Reviews Physics, 4(6), 399412.10.1038/s42254-022-00455-1CrossRefGoogle Scholar
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed Machine Learning. Nature Reviews Physics, 3(6), 422440.10.1038/s42254-021-00314-5CrossRefGoogle Scholar
Kononova, O., Huo, H., He, T., Rong, Z., Botari, T., Sun, W., … & Ceder, G. (2019). Text-mined Dataset of Inorganic Materials Synthesis Recipes. Scientific Data, 6(1), 203.10.1038/s41597-019-0224-1CrossRefGoogle ScholarPubMed
Koscher, B. A., Canty, R. B., McDonald, M. A., Greenman, K. P., McGill, C. J., Bilodeau, C. L., … & Jensen, K. F. (2023). Autonomous, Multiproperty-driven Molecular Discovery: From Predictions to Measurements and Back. Science, 382(6677), eadi1407.10.1126/science.adi1407CrossRefGoogle ScholarPubMed
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436444.CrossRefGoogle ScholarPubMed
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541551.10.1162/neco.1989.1.4.541CrossRefGoogle Scholar
Li, M. M., Huang, K., & Zitnik, M. (2022). Graph Representation Learning in Biomedicine and Healthcare. Nature Biomedical Engineering, 6(12), 13531369.Google ScholarPubMed
Libbrecht, M. W., & Noble, W. S. (2015). Machine Learning Applications in Genetics and Genomics. Nature Reviews Genetics, 16(6), 321332.10.1038/nrg3920CrossRefGoogle ScholarPubMed
Lin, Y. L., Chang, P. C., Hsu, C., Hung, M. Z., Chien, Y. H., Hwu, W. L., … & Lee, N. C. (2022). Comparison of GATK and DeepVariant by Trio Sequencing. Scientific Reports, 12(1), 1809.10.1038/s41598-022-05833-4CrossRefGoogle ScholarPubMed
Loveland, D. W. (2016). Automated Theorem Proving: A Logical Basis. Elsevier.Google Scholar
Mak, K. K., Wong, Y. H., & Pichika, M. R. (2024). Artificial Intelligence in Drug Discovery and Development. In: Vogel, H. G. (ed.), Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays (pp. 14611498). Springer.10.1007/978-3-031-35529-5_92CrossRefGoogle Scholar
Mansimov, E., Mahmood, O., Kang, S., & Cho, K. (2019). Molecular Geometry Prediction using a Deep Generative Graph Neural Network. Scientific Reports, 9(1), 20381.10.1038/s41598-019-56773-5CrossRefGoogle ScholarPubMed
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4), 12.Google Scholar
Minsky, M., & Papert, S. (1969). Perceptrons, MIT Press.Google Scholar
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., … & Lowe, R. (2022). Training Language Models to Follow Instructions with Human Feedback. Advances in Neural Information Processing Systems, 35, 2773027744.Google Scholar
Park, J., Jo, J., & Yoon, S. (2024). Mass Spectra Prediction with Structural Motif-based Graph Neural Networks. Scientific Reports, 14(1), 1400.Google ScholarPubMed
Pearlmutter. (1989, June). Learning State Space Trajectories in Recurrent Neural Networks. In International 1989 Joint Conference on Neural Networks (pp. 365372). IEEE.Google Scholar
Pierce, J. R., & Carroll, J. B. (1966). Language and Machines: Computers in Translation and Linguistics. National Academy of Sciences/National Research Council.Google Scholar
Pizzuto, G., De Berardinis, J., Longley, L., Fakhruldeen, H., & Cooper, A. I. (2022, July). Solis: Autonomous Solubility Screening using Deep Neural Networks. In 2022 International Joint Conference on Neural Networks (IJCNN) (pp. 17). IEEE.Google Scholar
Pun, F. W., Ozerov, I. V., & Zhavoronkov, A. (2023). AI-powered Therapeutic Target Discovery. Trends in Pharmacological Sciences, 44(9), 561572.Google ScholarPubMed
Rohrbach, S., Šiaučiulis, M., Chisholm, G., Pirvan, P. A., Saleeb, M., Mehr, S. H. M., … & Cronin, L. (2022). Digitization and Validation of a Chemical Synthesis Literature Database in the ChemPU. Science, 377(6602), 172180.10.1126/science.abo0058CrossRefGoogle ScholarPubMed
Romera-Paredes, B., Barekatain, M., Novikov, A., Balog, M., Kumar, M. P., Dupont, E., … & Fawzi, A. (2024). Mathematical Discoveries from Program Search with Large Language Models. Nature, 625(7995), 468475.10.1038/s41586-023-06924-6CrossRefGoogle ScholarPubMed
Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65(6), 386.Google ScholarPubMed
Russell, S. J., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson.Google Scholar
Sanchez-Lengeling, B., & Aspuru-Guzik, A. (2018). Inverse Molecular Design using Machine Learning: Generative Models for Matter Engineering. Science, 361(6400), 360365.CrossRefGoogle ScholarPubMed
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1), 6180.CrossRefGoogle ScholarPubMed
Segler, M. H., Preuss, M., & Waller, M. P. (2018). Planning Chemical Syntheses with Deep Neural Networks and Symbolic AI. Nature, 555(7698), 604610.10.1038/nature25978CrossRefGoogle ScholarPubMed
Siekmann, J., & Wrightson, G. (eds.). (2012). Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970. Springer Science & Business Media.Google Scholar
Smolensky, P. (1987). Connectionist AI, Symbolic AI, and the Brain. Artificial Intelligence Review, 1(2), 95109.Google Scholar
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015, June). Deep Unsupervised Learning using Nonequilibrium Thermodynamics. In International Conference on Machine Learning (pp. 22562265). PMLR.Google Scholar
Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, 59(236), 433.Google Scholar
Urbina, F., Lentzos, F., Invernizzi, C., & Ekins, S. (2022). Dual Use of Artificial-Intelligence-Powered Drug Discovery. Nature Machine Intelligence, 4(3), 189191.10.1038/s42256-022-00465-9CrossRefGoogle ScholarPubMed
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention Is All You Need. Advances in Neural Information Processing Systems, 30, 59986008.Google Scholar
Vignale, G., & Rasolt, M. (1987). Density-Functional Theory in Strong Magnetic Fields. Physical Review Letters, 59(20), 2360.10.1103/PhysRevLett.59.2360CrossRefGoogle ScholarPubMed
Visan, A. I., & Negut, I. (2024). Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life, 14(2), 233.Google ScholarPubMed
Vora, L. K., Gholap, A. D., Jetha, K., Thakur, R. R. S., Solanki, H. K., & Chavda, V. P. (2023). Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics, 15(7), 1916.CrossRefGoogle ScholarPubMed
Wang, H. (1960). Proving Theorems by Pattern Recognition I. Communications of the ACM, 3(4), 220234.10.1145/367177.367224CrossRefGoogle Scholar
Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., … & Zitnik, M. (2023). Scientific Discovery in the Age of Artificial Intelligence. Nature, 620(7972), 4760.Google ScholarPubMed
Waterman, D. A. (1985). A Guide to Expert Systems. Addison-Wesley Longman Publishing Co., Inc.Google Scholar
Werbos, P. J. (1994). The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting (Vol. 1). John Wiley & Sons.Google Scholar
Wieder, O., Kohlbacher, S., Kuenemann, M., Garon, A., Ducrot, P., Seidel, T., & Langer, T. (2020). A Compact Review of Molecular Property Prediction with Graph Neural Networks. Drug Discovery Today: Technologies, 37, 112.10.1016/j.ddtec.2020.11.009CrossRefGoogle ScholarPubMed
Wiles, A. (1995). Modular Elliptic Curves and Fermat’s Last Theorem. Annals of Mathematics, 141(3), 443551.10.2307/2118559CrossRefGoogle Scholar
Yun, T., Li, H., Chang, P. C., Lin, M. F., Carroll, A., & McLean, C. Y. (2020). Accurate, Scalable Cohort Variant Calls using DeepVariant and GLnexus. Bioinformatics, 36(24), 55825589.Google Scholar
Zhao, S., Chen, S., Zhou, J., Li, C., Tang, T., Harris, S. J., … & Li, X. (2024). Potential to Transform Words to Watts with Large Language Models in Battery Research. Cell Reports Physical Science, 5(3), 101844.10.1016/j.xcrp.2024.101844CrossRefGoogle Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×