Hostname: page-component-cb9f654ff-fg9bn Total loading time: 0 Render date: 2025-09-01T22:57:39.162Z Has data issue: false hasContentIssue false

Chukhrovite-(Ce), (Ca3Ce)[AlF6]2(SO4)F·12H2O, from the Tripi mine, Alì, Messina Province, Sicily, Italy: definition of neotype material

Published online by Cambridge University Press:  27 December 2024

Daniela Mauro*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, Pisa, Italy Museo di Storia Naturale, Università di Pisa, Via Roma, Calci, Pisa, Italy
Cristian Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, Pisa, Italy Centro per l’Integrazione della Strumentazione scientifica dell’Università di Pisa, Università di Pisa, Italy
Jiří Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová, Prague, Czech Republic
Zdeněk Dolníček
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová, Prague, Czech Republic
*
Corresponding author: Daniela Mauro; Email: daniela.mauro@unipi.it

Abstract

Neotype material of chukhrovite-(Ce), ideally (Ca3Ce)[AlF6]2(SO4)F·12H2O, was established on the basis of a new occurrence from the Tripi mine, Alì, Peloritani Mountains, Sicily, Italy. In fact the Russian specimens originally considered as type material of this species were later found to correspond to Ce-rich chukhrovite-(Y). At the Tripi mine, chukhrovite-(Ce) occurs as white cube-octahedral crystals, up to 0.05 mm in size, associated with creedite, quartz and fluorite. Electron microprobe analysis gave (in wt.%, normalised to sum = 100.00): SO3 8.40, P2O5 0.16, ZrO2 0.12, Al2O3 11.95, Y2O3 0.48, La2O3 3.64, Ce2O3 7.63, Pr2O3 1.00, Nd2O3 3.23, Sm2O3 0.97, Eu2O3 0.13, Gd2O3 0.97, Dy2O3 0.21, CaO 20.47, F 22.09, Cl 0.07, O = (F, Cl) –9.31, H2Ocalc 27.80. On the basis of 29 anions per formula unit, assuming the presence of 13 (F+Cl+OH) atoms and 12 H2O groups, the empirical formula of chukhrovite-(Ce) from the Tripi mine is Ca3.17(Ce0.40La0.19Nd0.17Pr0.05Sm0.05Gd0.05Y0.04Eu0.01Dy0.01)Σ0.97Zr0.01Al2.04(S0.91P0.02)Σ0.93O4[F10.10Cl0.02(OH)2.88]Σ13.00·12H2O. The occurrence of H2O groups was supported by micro-Raman spectroscopy. Chukhrovite-(Ce) is cubic, Fd$\bar 3$, with a = 16.7608(5) Å, V = 4708.5(4) Å3 and Z = 8. Its crystal structure was refined to R1 = 0.0378 for 604 unique reflections with Fo > 4σ(Fo) and 36 least-square parameters. Chukhrovite-(Ce) belongs to the chukhrovite group and it is isotypic with chukhrovite-(Y), whereas it is homeotypic with chukhrovite-(Ca).

Information

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Daniel Atencio

References

Anders, E. and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.CrossRefGoogle Scholar
Bau, M. (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance on the oxidation state of europium. Chemical Geology, 93, 219230.CrossRefGoogle Scholar
Bau, M. and Möller, P. (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology, 45, 231246.CrossRefGoogle Scholar
Bokiy, G.B. and Gorogotskaya, L.I. (1965) The crystal structure of chukhrovite. Doklady Akademii Nauk SSSR, Earth Science Sections, 163, 9294.Google Scholar
Bosi, F., Hatert, F., Pasero, M. and Mills, S.J. (2024) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 81. Mineralogical Magazine, 88, 632637, http://doi.org/10.1180/mgm.2024.77CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bruker, AXS (2022) APEX4. Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Dunn, P.J. and Mandarino, J.A. (1987) Formal definitions of type mineral specimens. The Canadian Mineralogist, 25, 571572.Google Scholar
Embrey, P.G. and Hey, M.H. (1970) Type specimens in mineralogy. Mineralogical Record, 1, 102104.Google Scholar
Ermilova, L.P., Moleva, V.A. and Klevtsova, R.F. (1960) Chukhrovite, a new mineral from Central Kazakhstan. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 89, 1525.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O···O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Fleischer, M., Cabri, L.J., Chao, G.Y. and Pabst, A. (1980) New mineral names. American Mineralogist, 65, 10651070.Google Scholar
Gentile, P., Vignola, P. and Gatta, D.G. (2012) La chukhrovite-(Ce) di Valvassera. Quarto ritrovamento mondiale in Valganna (VA), primo per l’Italia. Rivista Mineralogica Italiana, 36, 2629.Google Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Reviews in Mineralogy and Geochemistry, 40, 1101.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996) PowderCell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications. The Canadian Mineralogist, 17, 7176.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mathew, M., Takagi, S., Waerstad, K.R. and Frazier, A.W. (1981) The crystal structure of synthetic chukhrovite, Ca4AlSi(SO4)F13·12H2O. American Mineralogist, 66, 392397.Google Scholar
Mauro, D., Biagioni, C., Sejkora, J. and Dolníček, Z. (2023) Occurrence and crystal chemistry of austinite, conichalcite and zincolivenite from the Peloritani Mountains, northeastern Sicily, Italy. Mineralogical Magazine, 87, 659669.CrossRefGoogle Scholar
Mauro, D., Biagioni, C. and Zaccarini, F. (2022) A contribution to the mineralogy of Sicily, Italy – Kintoreite from the Tripi mine, Peloritani Mountains: occurrence and crystal structure. Mineralogical Magazine, 86, 548556.CrossRefGoogle Scholar
Migdisov, A.A. and Williams-Jones, A.E. (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineralium Deposita, 49, 987997.CrossRefGoogle Scholar
Migdisov, A., Williams-Jones, A.E., Brugger, J. and Caporuscio, F.A. (2016) Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. Chemical Geology, 439, 1342.CrossRefGoogle Scholar
Nickel, E.H. and Mandarino, J.A. (1987) Procedures involving the IMA Commission on New Minerals and Mineral Names and guidelines on mineral nomenclature. American Mineralogist, 72, 10311042.Google Scholar
Niedermayr, G., Bauer, C., Bernhard, F., Blass, G., Bojar, H.P., Brandstätter, F., Gröbner, J., Hmmer, V.M.F., Koch, G., Kolitsch, U., Leikauf, B., Loranth, C., Poeverlein, R., Postl, W., Prasnik, H., Schachinger, T., Tomazic, P. and Walter, F. (2008) Neue mineralfunde aus Österreich LVII. Carinthia II, 1998/118, 223274 [in German].Google Scholar
Novikova, M.I. (1973) Occurrence of chukhrovite in Siberia. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 102, 200202.Google Scholar
Palmer, D.C. (2014) CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.Google Scholar
Pasero, M. (2025) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). http://cnmnc.units.it/.Google Scholar
Pautov, L.A., Bekenova, G.K., Karpenko, V.Y. and Agakhanov, A.A. (2005) Chukhrovite-(Nd), Ca3(Nd,Y)Al2(SO4)F13·12H2O, a new mineral. New Data on Minerals, 40, 510.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco.Google Scholar
Saccà, C., Saccà, D., Nucera, P., De Fazio, A. and D’Urso, D. (2007) Geochemical and mineralogical features of the polymetallic deposit from Alì (NE Sicily, Italy). Atti dell’Accademia Peloritana dei Pericolanti, 85, 112.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Sverjensky, D.A. (1984) Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67, 7078.CrossRefGoogle Scholar
Vergasova, L.P., Semyonova, T.F., Epifanova, V.B., Filatov, S.K. and Chubarov, V.M. (2004) Meniaylovite, Ca4AlSi(SO4)F13·12H2O, a new mineral of volcanic exhalations. Vulkanologiya i Seismologiya, 2, 35 [in Russian].Google Scholar
Vignola, P., Hatert, F., Bersani, D., Diella, V., Gentile, P. and Risplendente, A. (2012) Chukhrovite-(Ca), Ca4.5Al2(SO4)F13·12H2O, a new mineral species from the Val Cavallizza mine Pb-Zn-(Ag) mine, Cuasso al Monte, Varese province, Italy. European Journal of Mineralogy, 24, 10691076.CrossRefGoogle Scholar
Walenta, K. (1979) Chukhrovite-(Ce) and rhabdophane-(Ce) from the Clara mine at Oberwolfach, Middle Black Forest. Chemie der Erde, 38, 331339 [in German].Google Scholar
Williams-Jones, A.E., Migdisov, A.A. and Samson, I.A. (2012) Hydrothermal mobilisation of the rare earth elements – a tale of “ceria” and “yttria”. Elements, 8, 355360.CrossRefGoogle Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography, Volume C: Mathematical, physical and chemical tables. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
Wood, S.A. (1990) The aqueous geochemistry of the rare-earth elements and yttrium 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chemical Geology, 88, 99125.CrossRefGoogle Scholar
Supplementary material: File

Mauro et al. supplementary material 1

Mauro et al. supplementary material
Download Mauro et al. supplementary material 1(File)
File 100.7 KB
Supplementary material: File

Mauro et al. supplementary material 2

Mauro et al. supplementary material
Download Mauro et al. supplementary material 2(File)
File 300.1 KB