Hostname: page-component-54dcc4c588-hp6zs Total loading time: 0 Render date: 2025-09-22T07:05:51.381Z Has data issue: false hasContentIssue false

Zinc oxide-curcumin nanoparticles supplementation during oocyte maturation improves bovine in vitro embryo production

Published online by Cambridge University Press:  11 September 2025

Luisa Miglio
Affiliation:
Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
Muller Carrara Martins
Affiliation:
Laboratory Reproductive Biology, Institute of Biomedicine, Federal University of Uberlandia, Uberlandia, Brazil
Serena Mares Malta
Affiliation:
Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
Renner Mateus Francisco Duarte
Affiliation:
Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
Marco Aurélio Schiavo Novaes
Affiliation:
Federal Rural University of the Amaz on, Paragominas, PA, Brazil
Laritza Ferreira de Lima
Affiliation:
Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
Tatiane Moraes Arantes
Affiliation:
Federal University of Jataí-UFJ, Jatai, Brazil
Rayssa de Souza Lopes
Affiliation:
Federal University of Jataí-UFJ, Jatai, Brazil
Kele Amaral Alves
Affiliation:
Conception Biosciences Inc. Berkeley, CA, USA
Marcelo Emílio Beletti
Affiliation:
Laboratory Reproductive Biology, Institute of Biomedicine, Federal University of Uberlandia, Uberlandia, Brazil
Foued Salmen Espíndola
Affiliation:
Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
José Ricardo de Figueiredo*
Affiliation:
Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
*
Corresponding author: José Ricardo de Figueiredo; Email: jrf.lamofopapapers@gmail.com

Abstract

This work investigated the effect of zinc oxide nanoparticles functionalized with curcumin (ZnO(np)+CUR) supplementation during the in vitro maturation (IVM) of bovine oocytes on the in vitro embryo production and the cellular antioxidant response. A total of 1,625 cumulus-oocyte complexes (COCs) were cultured in the maturation medium in the absence (0 µM - control) or presence of different concentrations of ZnO(np)+CUR (3 µM, 6 µM or 12 µM). After IVM, COCs were destined either to 1) in vitro embryo production or 2) analysis of reactive oxygen species production, superoxide dismutase (SOD) activity, catalase (CAT) activity and total antioxidant capacity (FRAP). The results demonstrated that the addition of 6 and 12 µM ZnO(np)+CUR during in vitro maturation showed a higher rate of blastocyst production when compared to the control (p < 0.05). However, only 12 µM ZnO(np)+CUR treatment showed higher rates of embryo production when compared to 3µM ZnO(np)+CUR treatment. Supplementation of IVM medium with 6 µM ZnO(np)+CUR reduced ROS production (p < 0.05) compared to control and 12 µM ZnO(np)+CUR treatments. Also, the treatment containing ZnO(np)+CUR at 12 µM had lower SOD activity after IVM than control treatment. In conclusion, the best outcome for in vitro embryo production was obtained when 6 and 12 µM ZnO(np)+CUR was added during IVM of bovine oocytes. However, this improvement in in vitro embryo production was not associated with either the reduction of ROS production or SOD and CAT activities.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aebi, H. (1984) Catalase in vitro. Methods in Enzymology 105, 121126. https://doi.org/10.1016/s0076-6879(84)05016-3 CrossRefGoogle ScholarPubMed
Agarwal, A., Maldonado Rosas, I., Anagnostopoulou, C., Cannarella, R., Boitrelle, F., Munoz, L. V., Finelli, R., Durairajanayagam, D., Henkel, R. and Saleh, R. (2022) Oxidative stress and assisted reproduction: a comprehensive review of its pathophysiological role and strategies for optimizing embryo culture environment. Antioxidants (Basel, Switzerland) 11(3), 477. https://doi.org/10.3390/antiox11030477 Google ScholarPubMed
Amalraj, A., Pius, A., Gopi, S. and Gopi, S. (2016) Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. Journal of Traditional and Complementary Medicine 7(2), 205233. https://doi.org/10.1016/j.jtcme.2016.05.005 CrossRefGoogle ScholarPubMed
Anjos, J. C., Aguiar, F. L. N., , N. A. R., Souza, J. F., Cibin, F. W. S., Alves, B. G., Santos, R. R. and Figueiredo, J. R. (2019) Anethole improves blastocysts rates together with antioxidant capacity when added during bovine embryo culture rather than in the in vitro maturation medium. Zygote (Cambridge, England) 27(6), 382385. https://doi.org/10.1017/S0967199419000443 CrossRefGoogle ScholarPubMed
Bai, C., Zhao, J., Su, J., Chen, J., Cui, X., Sun, M. and Zhang, X. (2022) Curcumin induces mitochondrial apoptosis in human hepatoma cells through BCLAF1-mediated modulation of PI3K/AKT/GSK-3β signaling. Life Sciences 306, 120804. https://doi.org/10.1016/j.lfs.2022.120804 CrossRefGoogle Scholar
Chen, C. C. and Chan, W. H. (2012) Injurious effects of curcumin on maturation of mouse oocytes, fertilization and fetal development via apoptosis. International Journal of Molecular Sciences 13(4), 46554672. https://doi.org/10.3390/ijms13044655 CrossRefGoogle ScholarPubMed
Del Socorro, M.M.L., Teves, F.G., Madamba, M.R.S.B. (2013) DNA-binding activity and partial characterization by Fourier Transform Infrared Spectroscopy (FTIR) of Curcuma longa L. SC-CO2 extracts. International Research Journal of Biological Sciences 2, 4044.Google Scholar
Dhivya, R., Ranjani, J., Rajendhran, J., Mayandi, J. and Annaraj, J. (2018) Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Materials Science & Engineering. C, Materials for Biological Applications 82, 182189. https://doi.org/10.1016/j.msec.2017.08.058 CrossRefGoogle ScholarPubMed
El-Sheikh, M., Mesalam, A., Khalil, A. A. K., Idrees, M., Ahn, M. J., Mesalam, A. A. and Kong, I. K. (2023) Downregulation of PI3K/AKT/mTOR pathway in juglone-treated bovine oocytes. Antioxidants (Basel, Switzerland) 12(1), 114. https://doi.org/10.3390/antiox12010114 Google ScholarPubMed
Flores, D., Souza, V., Betancourt, M., Teteltitla, M., González-Márquez, H., Casas, E., Bonilla, E., Ramírez-Noguera, P., Gutiérrez-Ruíz, M. C. and Ducolomb, Y. (2017) Oxidative stress as a damage mechanism in porcine cumulus-oocyte complexes exposed to malathion during in vitro maturation. Environmental Toxicology 32(6), 16691678. https://doi.org/10.1002/tox.22384 CrossRefGoogle ScholarPubMed
Franco, R. R., Mota Alves, V. H., Ribeiro Zabisky, L. F., Justino, A. B., Martins, M. M., Saraiva, A. L., Goulart, L. R. and Espindola, F. S. (2020) Antidiabetic potential of Bauhinia forficata Link leaves: a non-cytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 123, 109798. https://doi.org/10.1016/j.biopha.2019.109798 CrossRefGoogle Scholar
Hansen, P. J. (2006) Realizing the promise of IVF in cattle--an overview. Theriogenology 65(1), 119125. https://doi.org/10.1016/j.theriogenology.2005.09.019 CrossRefGoogle ScholarPubMed
Huang, F. J., Lan, K. C., Kang, H. Y., Liu, Y. C., Hsuuw, Y. D., Chan, W. H. and Huang, K. E. (2013) Effect of curcumin on in vitro early post-implantation stages of mouse embryo development. European Journal of Obstetrics, Gynecology, and Reproductive Biology 166(1), 4751. https://doi.org/10.1016/j.ejogrb.2012.09.010 CrossRefGoogle ScholarPubMed
Jiang, J., Pi, J. and Cai, J. (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications 2018, 1062562. https://doi.org/10.1155/2018/1062562 CrossRefGoogle ScholarPubMed
Li, R., Jia, Z. and Trush, M. A. (2016) Defining ROS in biology and medicine. Reactive oxygen species (Apex, N.C.) 1(1), 921. https://doi.org/10.20455/ros.2016.803 Google ScholarPubMed
Lonergan, P. and Fair, T. (2008) In vitro-produced bovine embryos: dealing with the warts. Theriogenology 69(1), 1722. https://doi.org/10.1016/j.theriogenology.2007.09.007 CrossRefGoogle ScholarPubMed
Marklund, S. and Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47(3), 469474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x.CrossRefGoogle Scholar
Melekoglu, R., Ciftci, O., Eraslan, S., Cetin, A. and Basak, N. (2018) Beneficial effects of curcumin and capsaicin on cyclophosphamide-induced premature ovarian failure in a rat model. Journal of Ovarian Research 11(1), 33. https://doi.org/10.1186/s13048-018-0409-9 CrossRefGoogle ScholarPubMed
Moreira-Pinto, B., Costa, L., Fonseca, B. M. and Rebelo, I. (2020) Dissimilar effects of curcumin on human granulosa cells: Beyond its anti-oxidative role. Reproductive Toxicology (Elmsford, N.Y.) 95, 5158. https://doi.org/10.1016/j.reprotox.2020.04.069 CrossRefGoogle ScholarPubMed
Namula, Z., Sato, Y., Wittayarat, M., Le, Q. A., Nguyen, N. T., Lin, Q., Hirata, M., Tanihara, F. and Otoi, T. (2020). Curcumin supplementation in the maturation medium improves the maturation, fertilisation and developmental competence of porcine oocytes. Acta Veterinaria Hungarica 68(3), 298304. https://doi.org/10.1556/004.2020.00041 CrossRefGoogle ScholarPubMed
Perera, W. P. T. D., Dissanayake, R. K., Ranatunga, U. I., Hettiarachchi, N. M., Perera, K. D. C., Unagolla, J. M., De Silva, R. T. and Pahalagedara, L. R. (2020) Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Advances 10(51), 3078530795. https://doi.org/10.1039/d0ra05755j CrossRefGoogle ScholarPubMed
Perker, M. C., Orta Yilmaz, B., Yildizbayrak, N., Aydin, Y. and Erkan, M. (2019) Protective effects of curcumin on biochemical and molecular changes in sodium arsenite-induced oxidative damage in embryonic fibroblast cells. Journal of Biochemical and Molecular Toxicology 33(7), e22320. https://doi.org/10.1002/jbt.22320 CrossRefGoogle ScholarPubMed
Qin, X., Cao, M., Lai, F., Yang, F., Ge, W., Zhang, X., Cheng, S., Sun, X., Qin, G., Shen, W. and Li, L. (2015) Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro. PloS one 10(6), e0127551. https://doi.org/10.1371/journal.pone.0127551 CrossRefGoogle ScholarPubMed
Reddy, A. C. and Lokesh, B. R. (1994) Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Molecular and Cellular Biochemistry 137(1), 18. https://doi.org/10.1007/BF00926033 CrossRefGoogle ScholarPubMed
Ritika, R., Saini, S., Shavi, S., Ramesh, P. N., Selokar, N. L., Ludri, A. and Singh, M. K. (2024) Curcumin enhances developmental competence and ameliorates heat stress in in vitro buffalo (Bubalus bubalis) embryos. Veterinary World 17(11), 24332442. https://doi.org/10.14202/vetworld.2024.2433-2442 CrossRefGoogle ScholarPubMed
Sahoo, D. K., Roy, A. and Chainy, G. B. (2008) Protective effects of vitamin E and curcumin on L-thyroxine-induced rat testicular oxidative stress. Chemico-Biological Interactions 176(2-3), 121128. https://doi.org/10.1016/j.cbi.2008.07.009 CrossRefGoogle ScholarPubMed
Silva, A. F. B., Lima, L. F., Morais, A. N. P., Lienou, L. L., Watanabe, Y. F., Joaquim, D. C., Morais, S. M., Alves, D. R., Pereira, A. F., Santos, A. C., Alves, B. G., Padilha, D. M. M., Gastal, E. L. and Figueiredo, J. R. (2022) Oocyte in vitro maturation with eugenol improves the medium antioxidant capacity and total cell number per blastocyst. Theriogenology 192, 109115. https://doi.org/10.1016/j.theriogenology.2022.08.024 CrossRefGoogle ScholarPubMed
Swain, J. E. and Pool, T. B. (2008) ART failure: oocyte contributions to unsuccessful fertilization. Human Reproduction Update 14(5), 431446. https://doi.org/10.1093/humupd/dmn025 CrossRefGoogle ScholarPubMed
Tvrdá, E., Tušimová, E., Kováčik, A., Paál, D., Greifová, H., Abdramanov, A. and Lukáč, N. (2016) Curcumin has protective and antioxidant properties on bull spermatozoa subjected to induced oxidative stress. Animal Reproduction Science 172, 1020. https://doi.org/10.1016/j.anireprosci.2016.06.008.CrossRefGoogle ScholarPubMed
Unnikrishnan, M. K. and Rao, M. N. (1995) Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Molecular and Cellular Biochemistry 146(1), 3537. https://doi.org/10.1007/BF00926878 CrossRefGoogle ScholarPubMed
Yan, Z., Dai, Y., Fu, H., Zheng, Y., Bao, D., Yin, Y., Chen, Q., Nie, X., Hao, Q., Hou, D. and Cui, Y. (2018) Curcumin exerts a protective effect against premature ovarian failure in mice. Journal of Molecular Endocrinology 60(3), 261271. https://doi.org/10.1530/JME-17-0214 CrossRefGoogle ScholarPubMed
Yasui, K. and Baba, A. (2006) Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflammation Research: Official Journal of the European Histamine Research Society 55(9), 359363. https://doi.org/10.1007/s00011-006-5195-y CrossRefGoogle ScholarPubMed
Zhai, K., Brockmüller, A., Kubatka, P., Shakibaei, M. and Büsselberg, D. (2020) Curcumin’s beneficial effects on neuroblastoma: mechanisms, challenges, and potential solutions. Biomolecules 10(11), 1469. https://doi.org/10.3390/biom10111469 CrossRefGoogle ScholarPubMed