Hostname: page-component-6bb9c88b65-xjl2h Total loading time: 0 Render date: 2025-07-24T07:09:01.689Z Has data issue: false hasContentIssue false

Resveratrol conjugated with silica nanoparticles used for in vitro bovine oocytes maturation

Published online by Cambridge University Press:  07 July 2025

Soraia Rage Rezende
Affiliation:
Universidade Federal de Uberlândia, Uberlandia, MG, Brazil
Mayara Mafra Soares
Affiliation:
Universidade Federal de Uberlândia, Uberlandia, MG, Brazil
Graciele Freitas Cardoso
Affiliation:
Universidade Federal de Uberlândia, Uberlandia, MG, Brazil
Deize de Cássia Antonino Rissato
Affiliation:
Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Ribeirao Preto, SP, Brazil
Giovanna Faria de Moraes
Affiliation:
Universidade Federal de Uberlândia, Uberlandia, MG, Brazil
Gustavo Pereira Cadima
Affiliation:
Universidade Federal de Uberlândia, Uberlandia, MG, Brazil
Kele Amaral Alves
Affiliation:
Pacific BioLabs Inc, Hercules, CA, USA
Benner Geraldo Alves
Affiliation:
Lander Veterinary Clinic Inc, Turlock, CA, USA
Tatiane Moraes Arantes
Affiliation:
Universidade Federal de Jataí, Jatai, GO, Brazil
Rodrigo Otavio Decaria de Salles Rossi
Affiliation:
Instituto Federal do Triângulo Mineiro, Uberlandia, MG, Brazil
Ricarda Maria dos Santos*
Affiliation:
Universidade Federal de Uberlândia, Uberlandia, MG, Brazil
*
Corresponding author: Ricarda Maria dos Santos; Email: ricarda.santos@ufu.br

Abstract

The objective was to evaluate the use of resveratrol conjugated with silica nanoparticles during the in vitro maturation of bovine oocytes. The oocytes were divided into the following treatment groups during the maturation process: control (n = 159), resveratrol 0.5 μM (n = 158), resveratrol 1 μM (n = 155), nanoparticles conjugated with 0.5 μM resveratrol (n = 159), and nanoparticles conjugated with 1 μM resveratrol (n = 158). Several parameters were assessed, including cumulus oophorus size, reactive oxygen species (ROS) production, oocyte nuclear maturation, cell apoptosis, cleavage rates, and blastocyst production rates. Statistical analysis was conducted using Sigma Plot software (version 11) and SAS Studio, with statistical significance defined as P ≤ 0.05 for the main effects and interactions. The results indicated that the cumulus oophorus size was smaller in the resveratrol 1 μM treatment group, and the oocyte size was reduced in the nanoparticle 1 μM treatment group. No significant differences were detected between the treatment groups in terms of ROS production, oocyte maturation, or cell apoptosis. However, the resveratrol 1 μM treatment group exhibited decreased rates of cleavage and blastocyst formation. In contrast, the nanoparticles 0.5 μM and 1.0 μM treatments showed improved cleavage and blastocyst rates compared with the resveratrol 1.0 μM treatment group. In summary, while resveratrol alone at 1 μM concentration had a negative impact on cleavage and blastocyst rates, the use of silica nanoparticles conjugated with resveratrol (both 0.5 μM and 1 μM) enhanced these outcomes, suggesting a potential advantage in using nanoparticle-conjugated resveratrol for the in vitro maturation of bovine oocytes.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arantes, T.M., Pinto, A.H., Leite, E.R., Longo, E. and Camargo, E.R. (2012) Synthesis and optimization of colloidal silica nanoparticles and their functionalization with methacrylic acid. Colloids and Surfaces A: Physicochemical Engineering Aspects 415, 209217.10.1016/j.colsurfa.2012.09.041CrossRefGoogle Scholar
Boruszewska, D., Sinderewicz, E., Kowalczyk-Zieba, I., Grycmacher, K. and Woclawek-Potocka, I. (2015) The effect of lysophosphatidic acid during in vitro maturation of bovine cumulus–oocyte complexes: cumulus expansion, glucose metabolism and expression of genes involved in the ovulatory cascade, oocyte and blastocyst competence. Reproductive Biology and Endocrinology 13, 44.10.1186/s12958-015-0044-xCrossRefGoogle Scholar
Broi, M.G., Giorgi, V.S.I, Wang, F., Keefe, D.L., Albertini, D. and Navarro, P.A. (2018) Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. Journal of Assisted Reproduction and Genetics 35, 735751.10.1007/s10815-018-1143-3CrossRefGoogle Scholar
Egashira, J., Ihara, Y., Khatun, H., Wada, Y., Konno, T., Tatemoto, H. and Yamanaka, K. (2019) Efficient in vitro embryo production using in vivo-matured oocytes from superstimulated Japanese black cows. Journal of Reproduction and Development 65, 183190.10.1262/jrd.2018-155CrossRefGoogle Scholar
El-Sanea, A.M. Abdoon, A.S.S., Kandil, O.M., El-Toukhy, N.E., El-Maaty, A.M.A. and Ahmed, H.H. (2021) Effect of oxygen tension and antioxidants on the developmental competence of buffalo oocytes cultured in vitro. Veterinary World 14, 7884.10.14202/vetworld.2021.78-84CrossRefGoogle Scholar
Hax, L.T., Rincón, J.A.A., Schneider, A., Pegoraro, L.M.C., Collares, L.F., Pereira, R.A., Pradieé, J., Del Pino, F.A.B. and Corrêa, M.N. (2019) Effect of butafosfan supplementation during oocyte maturation on bovine embryo development. Zygote 27, 321328.Google Scholar
Hou, C.C. and Zhu, J.Q. (2017) Nanoparticles and female reproductive system: how do nanoparticles affect oogenesis and embryonic development. Oncotarge 8, 109799109817.10.18632/oncotarget.19087CrossRefGoogle Scholar
Iwata, H. (2021) Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos. Reproductive Medicine and Biology 20, 419426.10.1002/rmb2.12401CrossRefGoogle Scholar
Jang, J., Song, J., Lee, J., Moon, S. and Moon, B. (2021) Resveratrol attenuates the proliferation of prostatic stromal cells in benign prostatic hyperplasia by regulating cell cycle progression, apoptosis, signaling pathways, BPH markers, and NF-κB activity. International journal of molecular sciences 22, 5969.10.3390/ijms22115969CrossRefGoogle Scholar
Jiao, G.Z., Cao, X., Cui, W., Lian, H., Miao, Y., Wu, X., Han, D. and Tan, J. (2013) Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione. Plos One 8, e58018.10.1371/journal.pone.0058018CrossRefGoogle Scholar
Khazaei, M. and Aghaz, F. (2017) Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes. International Journal of Fertility and Sterility 11, 6370.Google Scholar
Kim, T.H, Park, JH. and Woo, J.S. (2019) Resveratrol induces cell death through ROS‑dependent downregulation of Notch1/PTEN/Akt signaling in ovarian cancer cells. Molecular Medicine reports 9, 33533360.Google Scholar
Kwak, S.S., Cheong, S.A., Jeon, Y., Lee, E. Choi, K., Jeung, E. and Hyun, S. (2012) The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 78, 86101.10.1016/j.theriogenology.2012.01.024CrossRefGoogle Scholar
Lee, S., Jin, J., Taweechaipaisankul, A., Kim, G.A. and Lee, C.L. (2018) Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology 114, 191198.10.1016/j.theriogenology.2018.03.040CrossRefGoogle Scholar
Leibfried, L. and First, N.L. (1979) Characterization of bovine follicular oocytes and their ability to mature in vitro. Journal of Animal Science 48, 7686.10.2527/jas1979.48176xCrossRefGoogle Scholar
Liu, M.J., Sun, A., Zhao, S., Liu, H., Ma, S., Li, M., Huai, Y., Zhao, H. and Liu, H.B. (2018) Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertility and Sterility 109, 900907.10.1016/j.fertnstert.2018.01.020CrossRefGoogle Scholar
Luciano, A.M., Franciosi, F., Barros, R.G., Dieci, C. and Lodde, V. (2018) The variable success of in vitro maturation: can we do better? Animal Reproduction 15, 727736.10.21451/1984-3143-AR2018-0021CrossRefGoogle Scholar
Park, S.J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A.L., Kim, M.K., Beaven, M.B., Burgin, A.B., Manganiello, V. and Chung, J.H. (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421433.10.1016/j.cell.2012.01.017CrossRefGoogle Scholar
Parrish, J.J., Krogenaes, A. and Susko-Parrish, J.L. (1995) Effect of bovine sperm separation by either swim-up or percoll method on success of in vitro fertilization and early embryonic development. Theriogenology 44, 859869.10.1016/0093-691X(95)00271-9CrossRefGoogle Scholar
Piras, A.R., Menéndez-Blanco, I., Soto-Heras, S., Catalá, M.G., Izquierdo, D., Bogliolo, L. and Paramio, M.T. (2019) Resveratrol supplementation during in vitro maturation: effect on the quality of oocytes in species of veterinary interest. Journal of Reproduction and Development 65, 113120.10.1262/jrd.2018-077CrossRefGoogle Scholar
Piras, A.R., Ariu, F., Falchi, L., Zedda, M.T., Pau, S., Schianchi, E., Paramio, M.T. and Bogliolo, L. (2020) Resveratrol treatment during maturation enhances developmental competence of oocytes after prolonged ovary storage at 4 °C in the domestic cat model. Theriogenology, 144, 152157.10.1016/j.theriogenology.2020.01.009CrossRefGoogle Scholar
Remião, M.H., Lucas, C.G., Domingues, W.B., Silveira, T., Barther, N.N., Komninou, E.R., Basso, A.C., Jornada, D.S., Beck, R.C.R., Pohlmann, A.R., Varela Junior, A.S., Seixas, F.K., Campos, V.F., Guterres, S.S. and Collares, T. (2016) Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos. Reproductive Toxicology 63, 7081.10.1016/j.reprotox.2016.05.016CrossRefGoogle Scholar
Russo, R., Monaco, D., Rubessa, M., El-Bahrawy, K.A., El-Sayed, A., Martino, N.A., Beneult, B., Ciannarella, F., Dell’Aquila, M.E., Lacalandra, G.M. and Uranio, M.F. (2014) Confocal fluorescence assessment of bioenergy/redox status of dromedary camel (Camelus dromedarius) oocytes before and after in vitro maturation. Reproductive Biology and Endocrinology 12, 16.10.1186/1477-7827-12-16CrossRefGoogle Scholar
Saunier, E., Antonio, S., Regazzetti, A., Auzeil, N., Laprévote, O., Shay, J.W., Coumoul, X., Barouki, R., Benelli, C., Huc, L. and Bortoli, S. (2017) Resveratrol reverses the warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Scientific Reports 7, 6945.10.1038/s41598-017-07006-0CrossRefGoogle Scholar
Shaito, A., Posadino, A.M., Younes, N., Hasan, H., Halabi, S., Alhababi, D., Al-Mohannadi, A., Abdel-Rahman, W.M., Eid, A.H., Nasrallah, G.K. and Pintus, G. (2020) Potential adverse effects of resveratrol: a literature review. International Journal of Molecular Sciences 21, 2084.10.3390/ijms21062084CrossRefGoogle Scholar
Shen, D., Yang, J., Li, X., Zhou, L., Zhang, R., Li, W., Chen, L., Wang, R., Zhang, F. and Zhao, D. (2014) Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Letters 14, 923932.10.1021/nl404316vCrossRefGoogle Scholar
Summerlin, N., Qu, Z., Pujara, N., Sheng, Y., Jambhrunkar, S., McGuckin, M. and Popat, A. (2016) Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids and Surfaces B: Biointerfaces 144, 17.10.1016/j.colsurfb.2016.03.076CrossRefGoogle Scholar
Systat Software Inc. (SSI). Sigma Plot versão 11.0.1. August 23, 2008. Asian windows versions like Chinese/Korean/Taiwanese.Google Scholar
Turathum, B., Gao, E.M. and Chian, R.C. (2021) The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells 10, 2292.10.3390/cells10092292CrossRefGoogle Scholar
Vazquez, N.I., Gonzalez, Z., Ferrari, B. and Castro, Y. (2017) Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Boletín de la Sociedad Española de Cerámica y Vidrio 56, 139145.10.1016/j.bsecv.2017.03.002CrossRefGoogle Scholar
Viana, J.H.M., Siqueira, L.G.B., Palhao, M.P. and Camargo, L.S.A. (2012) Features and perspectives of the Brazilian in vitro embryo industry. Animal Reproduction 9, 1218.Google Scholar
Virant-Klun, I., Bauer, C., Ståhlberg, A., Kubista, M. and Skutella, T. (2018) Affiliations expand. human oocyte maturation in vitro is improved by co-culture with cumulus cells from mature oocytes. Reproductive BioMedicine Online 36, 508523.10.1016/j.rbmo.2018.01.011CrossRefGoogle Scholar
Wang, X., Zhu, X., Liang, X., Xu, H., Liao, Y., Lu, K. and Lu, S. (2019) Effects of resveratrol on in vitro maturation of porcine oocytes and subsequent early embryonic development following somatic cell nuclear transfer. Reproduction in Domestic Animals 54, 11951205.10.1111/rda.13493CrossRefGoogle Scholar
Wu, L., Chen, Q., Dong, B., Han, D., Zhu, X., Lui, H., Yang, Y., Xie, S. and Jin, J. (2023) Resveratrol attenuated oxidative stress and inflammatory and mitochondrial dysfunction induced by acute ammonia exposure in gibel carp (Carassius gibelio). Ecotoxicology and Environmental Safety 251, 114544.10.1016/j.ecoenv.2023.114544CrossRefGoogle Scholar
Yang, G., Chang, C.C., Yang, Y., Yuan, L., Xu, L., Ho, C.T. and Li, S. (2018) Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis. Journal of Agricultural and Food Chemistry 66, 1295312960.10.1021/acs.jafc.8b05047CrossRefGoogle Scholar
Zabihi, A., Shabankareh, H.K., Hajarian, H. and Foroutanifar, S. (2019) Resveratrol addition to in vitro maturation and in vitro culture media 1 enhanced developmental competence of sheep embryos. Domestic Animal Endocrinology 68, 2531.10.1016/j.domaniend.2018.12.010CrossRefGoogle Scholar