Hostname: page-component-54dcc4c588-mz6gc Total loading time: 0 Render date: 2025-10-04T22:48:41.222Z Has data issue: false hasContentIssue false

A Seven-Gene Signature for the Diagnosis of Parkinson’s Disease and Immune Infiltration Analysis

Published online by Cambridge University Press:  19 August 2025

Chengqun Wei
Affiliation:
Department of Neurology, Huaian Hospital of Huaian city-Huaian Cancer Hospital), Huai’an, China
Rui Xue
Affiliation:
Department of General Practice, Heilongjiang Provincial Hospital, Harbin, China
Zhan Gao
Affiliation:
Department of General Practice, Heilongjiang Provincial Hospital, Harbin, China
Hongyan Zhu
Affiliation:
Department of General Practice, Heilongjiang Provincial Hospital, Harbin, China
Xiuzhi Xu*
Affiliation:
Department of General Practice, Heilongjiang Provincial Hospital, Harbin, China
*
Corresponding author: Xiuzhi Xu; Email: 18576301387@163.com
Get access

Abstract

The objective was to identify the predictive markers and develop a diagnostic model with predictive markers for Parkinson’s disease (PD) and investigate the roles of immune cells in the disease pathology. Microarray datasets of PD and control samples were obtained from the Gene Expression Omnibus (GEO) database. We then performed a comprehensive analysis of differentially expressed genes (DEGs), functional enrichment, and protein-protein interactions to pinpoint a set of promising candidate genes. To establish a diagnosis model for PD, we utilized machine learning algorithms and evaluated the corresponding diagnostic performance using the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC). Additionally, the differential abundance of immune cell subsets between PD and control samples was evaluated using the single-sample Gene Set Enrichment Analysis (ssGSEA) method. A total of 264 DEGs were identified in GSE72267. The PPI network ultimately identified 30 hub genes for model construction. Seven genes, namely CD79B, CD40, CCR9, ADRA2A, SIGLEC1, FLT3LG, and THBD, were identified as diagnostic markers for PD, with an AUC of 0.870. This seven-gene signature model was subsequently validated in an independent cohort (GSE22491), demonstrating an AUC of 0.825. Ultimately, the infiltration of 28 immune cells showed that activated B cells, natural killer T cells, and regulatory T cells may contribute to the occurrence and progression of PD. We also found complex associations between these genes and immune cells. CD79B, CD40, CCR9, ADRA2A, SIGLEC1, FLT3LG, and THBD were identified as diagnostic markers for PD, and the infiltration of immune cells may contribute to the pathogenesis of the disease.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Society for Twin Studies

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Chengqun Wei and Rui Xue contributed to this work equally.

References

Álvarez-Luquín, D. D, Arce-Sillas, A., Leyva-Hernández, J., Sevilla-Reyes, E., Boll, M. C., Montes-Moratilla, E., Vivas-Almazán, V., Pérez-Correa, C., Rodríguez-Ortiz, U., Espinoza-Cárdenas, R., Fragoso, G., Sciutto, E., & Adalid-Peralta, L. (2019). Regulatory impairment in untreated Parkinson’s disease is not restricted to Tregs: Other regulatory populations are also involved. Journal of Neuroinflammation, 16, 212. https://doi.org/10.1186/s12974-019-1606-1 CrossRefGoogle Scholar
Armstrong, M. J., & Okun, M. S. (2020) Diagnosis and treatment of Parkinson disease: A review. JAMA, 32, 548560. https://doi.org/10.1001/jama.2019.22360 CrossRefGoogle Scholar
Atashrazm, F., Hammond, D., Perera, G., Dobson-Stone, C., Mueller, N., Pickford, R., Kim, W. S., Kwok, J. B., Lewis, S. J. G., Halliday, G. M., & Dzamko, N. (2018). Reduced glucocerebrosidase activity in monocytes from patients with Parkinson’s disease. Scientific Reports, 8, 15446. https://doi.org/10.1038/s41598-018-33921-x CrossRefGoogle ScholarPubMed
Blauwendraat, C., Nalls, M. A., & Singleton, A. B. (2020). The genetic architecture of Parkinson’s disease. Lancet Neurology, 19, 170178. https://doi.org/10.1016/S1474-4422(19)30287-X CrossRefGoogle ScholarPubMed
Boutet, A., Madhavan, R., Elias, G. J. B., Joel, S. E., Gramer, R., Ranjan, M., Paramanandam, V., Xu, D., Germann, J., Loh, A., Kalia, S. K., Hodaie, M., Li, B., Prasad, S., Coblentz, A., Munhoz, R. P., Ashe, J., Kucharczyk, W., Fasano, A., & Lozano, A. M. (2021). Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nature Communications, 2, 3043. https://doi.org/10.1038/s41467-021-23311-9 CrossRefGoogle Scholar
Brochard, V., Combadière, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., Bonduelle, O., Alvarez-Fischer, D., Callebert, J., Launay, J. M., Duyckaerts, C., Flavell, R. A., Hirsch, E. C., & Hunot, S. (2009). Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. Journal of Clinical Investigation, 119, 182192. https://doi.org/10.1172/JCI36470 Google Scholar
Calligaris, R., Banica, M., Roncaglia, P., Robotti, E., Finaurini, S., Vlachouli, C., Antonutti, L., Iorio, F., Carissimo, A., Cattaruzza, T., Ceiner, A., Lazarevic, D., Cucca, A., Pangher, N., Marengo, E., di Bernardo, D., Pizzolato, G., & Gustincich, S. (2015). Blood transcriptomics of drug-naive sporadic Parkinson’s disease patients. BMC Genomics, 16, 876. https://doi.org/10.1186/s12864-015-2058-3 CrossRefGoogle ScholarPubMed
Chowdhary, C. L., Khare, N., Patel, H., Koppu, S, Kaluri, R., & Rajput, D. S. (2022). Past, present and future of gene feature selection for breast cancer classification ¾ A survey. International Journal of Engineering Systems Modelling and Simulation, 13, 140153. https://doi.org/10.1504/IJESMS.2022.10047821 CrossRefGoogle Scholar
Chu, Y., Dodiya, H., Aebischer, P., Olanow, C. W., & Kordower, J. H. (2009). Alterations in lysosomal and proteasomal markers in Parkinson’s disease: Relationship to alpha-synuclein inclusions. Neurobiology of Disease, 35, 385398. https://doi.org/10.1016/j.nbd.2009.05.023.CrossRefGoogle ScholarPubMed
Danaher, P., Warren, S., Dennis, L., D’Amico, L., White, A., Disis, M. L., Geller, M. A., Odunsi, K., Beechem, J., & Fling, S. P. (2017). Gene expression markers of tumor infiltrating leukocytes. Journal for ImmunoTherapy of Cancer, 5, 18. https://doi.org/10.1186/s40425-017-0215-8 CrossRefGoogle ScholarPubMed
Dickson, D. W. (2012). Parkinson’s disease and parkinsonism: Neuropathology. Cold Spring Harbor Perspectives in Medicine, 2, a009258. https://doi.org/10.1101/cshperspect.a009258.CrossRefGoogle Scholar
Doorn, K. J., Moors, T., Drukarch, B., van de Berg, W. D. J., Lucassen, P. J., & van Dam, A. M. (2014). Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathologica Communications, 2, 90. https://doi.org/10.1186/s40478-014-0090-1 Google ScholarPubMed
Dulski, J., Uitti, R. J., Ross, O. A., & Wszolek, Z. K. (2022). Genetic architecture of Parkinson’s disease subtypes ¾ Review of the literature. Frontiers in Aging Neuroscience, 14, 1023574. https://doi.org/10.3389/fnagi.2022.1023574 CrossRefGoogle ScholarPubMed
GBD 2016 Parkinson’s Disease Collaborators. (2018). Global, regional, and national burden of Parkinson’s disease, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 17, 939953. https://doi.org/10.1016/S1474-4422(18)30295-3 CrossRefGoogle Scholar
Herrero, M. T., Estrada, C., Maatouk, L., & Vyas, S. (2015). Inflammation in Parkinson’s disease: Role of glucocorticoids. Frontiers in Neuroanatomy, 9, 32. https://doi.org/10.3389/fnana.2015.00032 CrossRefGoogle ScholarPubMed
Horvath, S., & Ritz, B. R. (2015). Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging, 7, 11301142. https://doi.org/10.18632/aging.100859 CrossRefGoogle ScholarPubMed
Kedmi, M., Bar-Shira, A., Gurevich, T., Giladi, N., & Orr-Urtreger, A. (2011). Decreased expression of B cell related genes in leukocytes of women with Parkinson’s disease. Molecular Neurodegeneration, 6, 66. https://doi.org/10.1186/1750-1326-6-66 CrossRefGoogle ScholarPubMed
Kumar, V., Lalotra, G. S., Sasikala, P., Rajput, D. S., Kaluri, R., Lakshmanna, K., Shorfuzzaman, M., Alsufyani, A., & Uddin, M. (2022). Addressing binary classification over class imbalanced clinical datasets using computationally intelligent techniques. Healthcare, 10, 1293. https://doi.org/10.3390/healthcare10071293 CrossRefGoogle ScholarPubMed
Kustrimovic, N., Comi, C., Magistrelli, L., Rasini, E., Legnaro, M., Bombelli, R., Aleksic, I., Blandini, F., Minafra, B., Riboldazzi, G., Sturchio, A., Mauri, M., Bono, G., Marino, F., & Cosentino, M. (2018). Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naive and drug-treated patients. Journal of Neuroinflammation, 15, 205. https://doi.org/10.1186/s12974-018-1248-8 CrossRefGoogle ScholarPubMed
Li, X., Sundquist, J., & Sundquist, K. (2012). Subsequent risks of Parkinson disease in patients with autoimmune and related disorders: A nationwide epidemiological study from Sweden. Neurodegenerative Diseases, 10, 277284. https://doi.org/10.1159/000333222 CrossRefGoogle ScholarPubMed
Lin, C. H., Chen, C. C., Chiang, H. L., Liou, J. M., Chang, C. M., Lu, T. P., Chuang, E. Y., Tai, Y. C., Cheng, C., Lin, H Y., & Wu, M. S. (2019). Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. Journal of Neuroinflammation, 16, 129. https://doi.org/10.1186/s12974-019-1528-y CrossRefGoogle ScholarPubMed
Lu, X., Li, L., Suo, L., Huang, P., Wang, H., Han, S., & Cao, M. (2022). Single-cell RNA sequencing profiles identify important pathophysiologic factors in the progression of diabetic nephropathy. Frontiers in Cell and Developmental Biology, 10, 798316. https://doi.org/10.3389/fcell.2022.798316 CrossRefGoogle ScholarPubMed
Mahul-Mellier, A. L., Burtscher, J., Maharjan, N., Weerens, L., Croisier, M., Kuttler, F., Leleu, M., Knott, G. W., & Lashuel, H. A. (2020). The process of Lewy body formation, rather than simply alpha-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 117, 49714982. https://doi.org/10.1073/pnas.1913904117 CrossRefGoogle ScholarPubMed
Marsili, L., Rizzo, G., & Colosimo, C. (2018). Diagnostic criteria for Parkinson’s disease: From James Parkinson to the concept of prodromal disease. Frontiers in Neurology, 9, 156. https://doi.org/10.3389/fneur.2018.00156 CrossRefGoogle Scholar
Matheoud, D., Sugiura, A., Bellemare-Pelletier, A., Laplante, A., Rondeau, C., Chemali, M., Fazel, A., Bergeron, J. J., Trudeau, L. E., Burelle, Y., Gagnon, E., McBride, H. M., & Desjardins, M. (2016). Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation. Cell, 166, 314327. https://doi.org/10.1016/j.cell.2016.05.039 CrossRefGoogle ScholarPubMed
Mu, J., Chaudhuri, K. R., Bielza, C., de Pedro-Cuesta, J., Larrañaga, P., & Martinez-Martin, P. (2017). Parkinson’s disease subtypes identified from cluster analysis of motor and non-motor symptoms. Frontiers in Aging Neuroscience, 9, 301. https://doi.org/10.3389/fnagi.2017.00301 CrossRefGoogle ScholarPubMed
Mutez, E., Larvor, L., Leprêtre, F., Mouroux, V., Hamalek, D., Kerckaert, J. P., Pérez-Tur, J., Waucquier, N., Vanbesien-Mailliot, C., Duflot, A., Devos, D., Defebvre, L., Kreisler, A., Frigard, B., Destée, A., & Chartier-Harlin, M. C. (2011). Transcriptional profile of Parkinson blood mononuclear cells with LRRK2 mutation. Neurobiology of Aging, 32, 18391848. https://doi.org/10.1016/j.neurobiolaging.2009.10.016 CrossRefGoogle ScholarPubMed
Niwa, Y., Kanda, H., Shikauchi, Y., Saiura, A., Matsubara, K., Kitagawa, T., Yamamoto, J., Kubo, T., & Yoshikawa, H. (2005). Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene, 24, 64066417. https://doi.org/10.1038/sj.onc.1208788 CrossRefGoogle ScholarPubMed
Okuno, T., Nakatsuji, Y., Kumanogoh, A., Moriya, M., Ichinose, H., Sumi, H., Fujimura, H., Kikutani, H., & Sakoda, S. (2005). Loss of dopaminergic neurons by the induction of inducible nitric oxide synthase and cyclooxygenase-2 via CD 40: Relevance to Parkinson’s disease. Journal of Neuroscience Research, 81, 874882. https://doi.org/10.1002/jnr.20599 CrossRefGoogle Scholar
Qi, X., Davis, B., Chiang, Y. H., Filichia, E., Barnett, A., Greig, NH., Hoffer, B., & Luo, Y. (2016). Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson’s disease model. Journal of Neurochemistry, 138, 746757. https://doi.org/10.1111/jnc.13706 CrossRefGoogle Scholar
Rivas, M. A., Avila, B. E., Koskela, J., Huang, H., Stevens, C., Pirinen, M., Haritunians, T., Neale, B. M., Kurki, M., Ganna, A., Graham, D., Glaser, B., Peter, I., Atzmon, G., Barzilai, N., Levine, A. P., Schiff, E., Pontikos, N., Weisburd, B., … Daly, M. J. (2018). Insights into the genetic epidemiology of Crohn’s and rare diseases in the Ashkenazi Jewish population. PLoS Genetics, 14, e1007329. https://doi.org/10.1371/journal.pgen.1007329 CrossRefGoogle ScholarPubMed
Sarkar, S., Dammer, E. B., Malovic, E., Olsen, A. L., Raza, S. A., Gao, T., Xiao, H., Oliver, D. L., Duong, D., Joers, V., Seyfried, N., Huang, M, Kukar, T, Tansey, M. G., Kanthasamy, A. G., & Rangaraju, S. (2020). Molecular signatures of neuroinflammation induced by alphaSynuclein aggregates in microglial cells. Frontiers in Immunology, 11, 33. https://doi.org/10.3389/fimmu.2020.00033 CrossRefGoogle ScholarPubMed
Schwab, A. D., Thurston, M. J., Machhi, J., Olson, K. E., Namminga, K. L., Gendelman, H. E., & Mosley, R. L. (2020). Immunotherapy for Parkinson’s disease. Neurobiology of Disease, 137, 104760. https://doi.org/10.1016/j.nbd.2020.104760 CrossRefGoogle ScholarPubMed
Selvaraj, N. P., Paulraj, S., Ramadass, P., Kaluri, R., Shorfuzzaman, M., Alsufyani, A., & Uddin, M. (2022). Exposure of botnets in cloud environment by expending trust model with CANFES classification approach. Electronics, 11, 2350. 10.3390/electronics11152350 10.3390/electronics11152350CrossRefGoogle Scholar
Stefanis, L., Emmanouilidou, E., Pantazopoulou, M., Kirik, D., Vekrellis, K., & Tofaris, G. K. (2019). How is alpha-synuclein cleared from the cell? Journal of Neurochemistry, 150, 577590. https://doi.org/10.1111/jnc.14704 CrossRefGoogle Scholar
Stevens, C. H., Rowe, D., Morel-Kopp, M. C., Orr, C., Russell, T., Ranola, M., Ward, C., & Halliday, G. M. (2012). Reduced T helper and B lymphocytes in Parkinson’s disease. Journal of Neuroimmunology, 252, 9599. https://doi.org/10.1016/j.jneuroim.2012.07.015 CrossRefGoogle Scholar
Sommer, A., Marxreiter, F., Krach, F., Fadler, T., Grosch, J., Maroni, M., Graef, D., Eberhardt, E., Riemenschneider, M. J., Yeo, G. W., Kohl, Z., Xiang, W., Gage, F. H., Winkler, J., Prots, I., & Winner, B. (2018). Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell, 23, 123131.e6. https://doi.org/10.1016/j.stem.2018.06.015 CrossRefGoogle Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B ¾ Methodological, 58, 267288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x CrossRefGoogle Scholar
Vinagre-Aragón, A., Campo-Caballero, D., Mondragón-Rezola, E., Pardina-Vilella, L., Hernandez Eguiazu, H., Gorostidi, A., Croitoru, I., Bergareche, A., & Ruiz-Martinez, J. (2021). A more homogeneous phenotype in Parkinson’s disease related to R1441G mutation in the LRRK2 gene. Frontiers in Neurology, 12, 635396. https://doi.org/10.3389/fneur.2021.635396 CrossRefGoogle ScholarPubMed
Wang, C., Chen, L., Yang, Y., Zhang, M., &Wong, G. (2019). Identification of potential blood biomarkers for Parkinson’s disease by gene expression and DNA methylation data integration analysis. Clinical Epigenetics, 11, 24. https://doi.org/10.1186/s13148-019-0621-5 CrossRefGoogle ScholarPubMed
Wijeyekoon, R. S., Kronenberg-Versteeg, D., Scott, K. M., Hayat, S., Jones, J. L., Clatworthy, M. R., Floto, R. A., Barker, R. A., & Williams-Gray, C. H. (2018). Monocyte function in Parkinson’s disease and the impact of autologous serum on phagocytosis. Frontiers in Neurology, 9, 870. https://doi.org/10.3389/fneur.2018.00870 CrossRefGoogle ScholarPubMed
Wolfrum, P., Fietz, A., Schnichels, S., & Hurst, J. (2022). The function of p53 and its role in Alzheimer’s and Parkinson’s disease compared to age-related macular degeneration. Frontiers in Neuroscience, 16, 1029473. https://doi.org/10.3389/fnins.2022.1029473 CrossRefGoogle ScholarPubMed
Zhao, S., Zhang, L., Ji, W., Shi, Y., Lai, G., Chi, H., Huang, W., & Cheng, C. (2022). Machine learning-based characterization of cuprotosis-related biomarkers and immune infiltration in Parkinson’s disease. Frontiers in Genetics, 13, 1010361. https://doi.org/10.3389/fgene.2022.1010361 CrossRefGoogle ScholarPubMed
Zhu, B., Yin, D., Zhao, H., & Zhang, L. (2022). The immunology of Parkinson’s disease. Seminars in Immunopathology, 44, 659672. https://doi.org/10.1007/s00281-022-00947-3 CrossRefGoogle ScholarPubMed