Hostname: page-component-54dcc4c588-64p75 Total loading time: 0 Render date: 2025-10-03T13:38:42.122Z Has data issue: false hasContentIssue false

Translating French mathematics and lobbying the horse-drawn carriage trade (USA, 1869–1877)

Published online by Cambridge University Press:  08 September 2025

Thomas Preveraud*
Affiliation:
University of Lille, France University of Artois, France

Argument

In the United States, in the second half of the nineteenth century, the reforming institutions of the horse-drawn-carriage trade prescribed descriptive geometry to their workshops in order to modernize the drawing process for modern carriages. This injunction, institutionally supported by the builder’s national association, professional newspapers, and education, was part of a wider movement to organize production at a time when the carriage trade was booming. In order to facilitate the circulation of theoretical knowledge within workshops that were reluctant to mathematize their environment, two trade journals translated, in the space of a few years, and on three occasions (once by one journal and twice by the other), the same French treatise on descriptive geometry written by a Parisian carriage woodworker. This paper highlights the process of creation of a mathematical translation in a professional environment. It emphasizes the significant role of the industrial and technical context that influenced the choice of translators, the writing style, and the speed with which a translation was produced and published. In the case of mathematical content that did not belong to the common culture of the trade, international circulation allowed for the direct transfer of knowledge from one national industry to another, without relying on academic sources as intermediaries.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ackerberg-Hastings, Amy. 2000. “Mathematics is a Gentleman’s Art: Analysis and Synthesis in American College Geometry Teaching, 1790–1840.” Ph.D. diss., Iowa State University.Google Scholar
Ackerberg-Hastings, Amy. 2010. “John Farrar and Curricular Transitions in Mathematics Education.” International Journal for the History of Mathematics Education 5 (2):1530.Google Scholar
Ageron, Pierre. 2017. “Le rôle des renégats occidentaux dans le transfert des sciences modernes aux pays d’Islam.” In Circulations savantes entre l’Europe et le reste du monde (xvii exx e siècle), edited by Preveraud, Thomas, 3158. Rennes: Presses universitaire de Rennes.10.4000/books.pur.61810CrossRefGoogle Scholar
Agostini-Ouafi, Viviana and Hermetet, Anne-Rachel. 2006. La traduction littéraire. Des aspects théoriques aux analyses textuelles. Caen: Presses universitaires de Caen.Google Scholar
Anonymous. 1869–1870. “Treatise on the Woodwork of Carriages.” The New York Coach-Maker’s Magazine 11 (4):5253; 11 (5):68–71; 11 (6):81–83; 11 (7):100–101; 11 (8):115–117; 11 (10):147–149; 11 (11):161–162; 11 (12):177–178; 12 (1):1–3; 12 (2):19–21; 12 (3):33–36.Google Scholar
B.B. 1871. “A Criticism.” The Hub 13 (8):161.Google Scholar
Barbin, Évelyne. 2019. “Descriptive Geometry in France: Circulation, Transformation, Recognition.” In Descriptive Geometry, The Spread of a Polytechnic Art, edited by Barbin, Évelyne, Menghini, Marta, and Volkert, Klaus, 1938. Cham, Springer.10.1007/978-3-030-14808-9_2CrossRefGoogle Scholar
Barbin, Évelyne, Menghini, Marta, and Volkert, Klaus (eds.). 2019. Descriptive Geometry, The Spread of a Polytechnic Art. Cham: Springer.10.1007/978-3-030-14808-9CrossRefGoogle Scholar
Belofsky, Harold. 1991. “Engineering Drawing – A Universal Language in Two Dialects.” Technology and Culture 32 (1):2346.Google Scholar
Berkebile, Don H. 1978. Carriage Terminology: An Historical Dictionary. Washington, D.C.: The Smithonian Institution Press.Google Scholar
Binois, Grégoire and Pansini, Valeria. 2022. “Les pratiques mathématiques dans l’évolution de la topographie militaire française.” Cahiers François Viète 3 (13):83110.10.4000/cahierscfv.3609CrossRefGoogle Scholar
Board, D. 1869. “Correspondence.” The Coach-Maker’s International Journal 4 (6):73.Google Scholar
Bouchet, Ghislaine. 1993. Le cheval à Paris de 1850 à 1914. Geneva and Paris: Droz.Google Scholar
Bret, Patrice, Chatzis, Konstantinos, and Pérez, Liliane. 2008. La presse et les périodiques techniques en Europe, 1750–1950. Paris: L’Harmattan.Google Scholar
Bret, Patrice and Verdier, Norbert. 2012. “Sciences et techniques.” In Histoire des traductions en langue française, XIXe siècle, 1815–1914, edited by Chevrel, Yves D’Hulst, Lieven and Lombez, Christine, 9251007. Lagrasse: Verdier.Google Scholar
Brown, John K. 2000. “Design Plans, Working Drawings, National Styles: Engineering Practice in Great Britain and the United States, 1775–1945.” Technology and Culture 41 (2):195238.10.1353/tech.2000.0057CrossRefGoogle Scholar
Brown, John K., Lee Downey, Gary, and Paula Diogo, Maria. 2009. “The Normativities of Engineers: Engineering Education and History of Technology.” Technology and Culture 50 (4):737752.10.1353/tech.0.0370CrossRefGoogle Scholar
Cajori, Florian. 1890. The Teaching and History of Mathematics in the United States. Washington, D.C.: Bureau of Education.Google Scholar
Charle, Christophe. 1992. “Le temps des hommes doubles.” Revue d’histoire moderne et contemporaine 39 (1):73.10.3406/rhmc.1992.1621CrossRefGoogle Scholar
Chatzis, Kostas, Morel, Thomas, Preveraud, Thomas, and Verdier, Norbert. 2017. “Traduire des mathématiques pour et par des élèves dans la première moitié du xix e siècle.” Mémoires du livre 9 (1):142.Google Scholar
Church, Albert E. 1864. Elements of Descriptive Geometry. New York: Barnes & Company.Google Scholar
Cormack, Lesley B., Walton, Steven A., and Schuster, John A.. 2018. Mathematical Practitioners and the Transformation of Natural Knowledge in Early Modern Europe. Cham: Springer.Google Scholar
Cousin, Marion. 2017. “Sur la création d’une nouvelle langue mathématique japonaise pour l’enseignement de la géométrie élémentaire durant l’ère Meiji (1868–1912).” Revue d’histoire des mathématiques 23 (1):570.Google Scholar
Crozet, Claude. 1821. A Treatise on Descriptive Geometry for the Use of the Cadets of the United States Military Academy. New York: Goodrich and Co.Google Scholar
Crozet, Pascal. 2008. Les sciences modernes en Égypte. Transfert et appropriation (1805–1902). Paris: Geuthner.Google Scholar
Crozet, Pascal and Horiuchi, Annick. 2004. Traduire, transposer, naturaliser: la formation d’une langue scientifique moderne hors des frontières de l’Europe au xix e siècle. Paris: L’Harmattan.Google Scholar
Daston, Lorraine. 2022. Rules. A Short Story of What We Live by. Princeton and Oxford: Princeton University Press.Google Scholar
Davies, Charles. [1826] 1870. Elements of Descriptive Geometry. New York: Barnes & Co.Google Scholar
Davies, Charles. [1828] 1864. Elements of Geometry and Trigonometry. New York: Barnes & Burr.Google Scholar
Dawson, Gowan and Topham, Jonathan R.. 2020. “Scientific, Medical, and Technical Periodicals in Nineteenth-Century Britain: New Formats for New Readers.” In Science Periodicals in Nineteenth-Century Britain: Constructing Scientific Communities, edited by Dawson, Gowan, Lightman, Bernard, Shuttleworth, Sally, and Jonathan, R. Topham, 3564. Chicago: University of Chicago Press.10.7208/chicago/9780226683461.003.0002CrossRefGoogle Scholar
d’Enfert, Renaud. 2003. L’enseignement du dessin en France. Figure humaine et dessin géométrique (1750–1850). Paris: Belin.Google Scholar
Deforge, Yves. 1981. Le graphisme technique, son histoire et son enseignement. Champ Vallon: Seyssel.Google Scholar
Despeaux, Sloan. 2002. “International Mathematical Contributions to British Scientific Journals, 1800–1900.” In Mathematics Unbound. The Evolution of an International Mathematical Research Community (1800–1945), History of Mathematics 23, edited by Karen, H. Parshall and Adrian, C. Rice, 6188. Providence: American Mathematical Society.Google Scholar
Dubourg-Glatigny, Pascal and Vérin, Hélène. 2008. Réduire en art. La technologie de la Renaissance aux Lumières. Paris: Éditions des sciences de l’homme.10.4000/books.editionsmsh.10126CrossRefGoogle Scholar
Durieux, Christine. 1990. “La recherche documentaire en traduction technique: conditions nécessaires et suffisantes.” Journal des traducteurs 35 (4):669675.Google Scholar
Durieux, Christine. 2000. “Traduction littéraire et traduction technique: même démarche.” Revue des lettres et de traduction 6:1325.Google Scholar
Ehrhardt, Caroline. 2022. “Ce que les mathématiciens font aux assurances: le conseil des mathématiciens de la Compagnie d’assurances générales sur la vie des hommes (1818–1823).” Cahiers François Viète 3 (13):151186.10.4000/cahierscfv.3659CrossRefGoogle Scholar
FitzGerald, William N. 1892. “Professor Gribbon.” The Hub 13 (12):571.Google Scholar
Ferguson, Eugene S. 1992. Engineering and the Mind’s Eye. Cambridge, MA: MIT Press.Google Scholar
Gordin, Michael D. 2012. “Translating Textbooks. Russian, German and the Language of Chemistry.” ISIS 103 (Focus: Textbooks in the Sciences):8898.10.1086/664980CrossRefGoogle ScholarPubMed
Grattan-Guinness, Ivor. 2022. “The End of Dominance: The Diffusion of French Mathematics Elsewhere (1820–1870).” In Mathematics Unbound. The Evolution of an International Mathematical Research Community (1800–1945), History of Mathematics 23, edited by Karen, H. Parshall and Adrian, C. Rice, 1739. Providence: American Mathematical Society.Google Scholar
Greeley, Horace. 1872. “Horace Greeley on the French Rule.” The Hub 14 (3):59.Google Scholar
Gribbon, John D. 1871. “The French Rule.” The Hub 13 (1):4; 13 (2):26; 13 (3):46–>47; 13 (4):63; 13 (5):83–84; 13 (6):102–103; 13 (7):128–129; 13 (8):151.Google Scholar
Gribbon, John D. 1872. “Acknowledgments from our French Rule Translator.” The Hub 14 (6):140.Google Scholar
Gribbon, John D. 1872–1873. “The French Rule.” The Hub 14 (1):10; 14 (2):36; 14 (3):58; 14 (4):82; 14 (5):107; 14 (6):131; 14 (10):228; 14 (11):255.Google Scholar
Gribbon, John D. 1873–1874. “The French Rule.” The Hub 15 (1):7; 15 (2):43; 15 (4):114; 15 (5):146; 15 (6):180; 15 (8):248; 15 (9):282; 15 (10):314.Google Scholar
Guthrie, Jesse. 1830. The American School-Master’s Assistant. New York: Collins & Co.Google Scholar
Houghton, George. 1871a. “Introduction.” The Hub 13 (1):3.Google Scholar
Houghton, George. 1871b. “The French Rule. Introduction.” The Hub 13 (1):4.Google Scholar
Houghton, George. 1871c. “Review of the June Hub.” The Hub 13 (4):61.Google Scholar
Houghton, George. 1871d. “A Word from the Editor.” The Hub 13 (8):151.Google Scholar
Houghton, George. 1872. “The French Rule: What We Will Do with It.” The Hub 13 (10):196.Google Scholar
Houghton, George. 1873. “Trade News, of M. Gribbon.” The Hub 15 (8):262.Google Scholar
Houghton, George. 1874a. “The Dupont Method of Carriage-Drafting.” The Hub 15 (10):315.Google Scholar
Houghton, George. 1874b. “Prospectus of Vol. 16.” The Hub 15 (12):381.Google Scholar
Houghton, George. 1874c. “French Rule.” The Hub 16 (2):37.Google Scholar
Houghton, George. 1874d. “Dinner Hour.” The Hub 16 (8):238.Google Scholar
Houghton, George. 1879. “The French Rule of Body-Making.” The Hub 20 (11):527.Google Scholar
Houghton, George. 1879–1880. “The Hub Dictionary of Carriage Terms.” The Hub 21 (1):14; 21 (2):70; 21 (3):117; 21 (4):163; 21 (5):216; 21 (6):265; 21 (7):299; 21 (8):356; 21 (9):403; 21 (10):447; 21 (11):485; 21 (12):527.Google Scholar
Kidwell, Peggy Aldrich, Ackerberg-Hastings, Amy, and Lindsay Roberts, David. 2008. Tools of American Mathematics Teaching, 1800–2000. Baltimore: The Johns Hopkins University Press.10.56021/9780801888144CrossRefGoogle Scholar
Kinney, Thomas A. 2004. The Carriage Trade. Baltimore: The Johns Hopkins University Press.10.56021/9780801879463CrossRefGoogle Scholar
Kluger, Richard. [1986] 2021. The Paper: The Life and Death of the New York Herald Tribune, Book One: 1835–1941. Lexington: Plunkett Lake Press.Google Scholar
Koselleck, Reinhart. [1979] 2000. Le futur passé. Contribution à la sémantique des temps historiques, translated by Jochen Hoock and Marie-Claire Hoock. Paris: École des hautes études en sciences sociales.Google Scholar
Jean-Louis, Libourel. [2005] 2016. Voitures hippomobiles. Vocabulaire typologique et technique. Paris: Éditions du patrimoine.Google Scholar
Lurkins, R. 1861. “Is the So-Called French Rule Imperfect?The New York Coach-Maker’s Magazine 4 (1):13.Google Scholar
Lützen, Jesper. 2002. “International Participation in Liouville’s Journal de mathématiques pures et appliquées. ” In Mathematics Unbound. The Evolution of an International Mathematical Research Community (1800–1945), History of Mathematics 23, edited by Karen, H. Parshall and Adrian, C. Rice, 89104. Providence: American Mathematical Society.Google Scholar
Middleton, C.S. 1873. “The English Cant Rule.” The Hub 14 (12):275279.Google Scholar
Monge, Gaspard. 1798. Géométrie descriptive. Paris: Baudoin.Google Scholar
Morel, Thomas. 2022. Underground Mathematics. Craft Culture and Knowledge Production in Early Modern Europe. Cambridge: Cambridge University Press.Google Scholar
Morel, Thomas and Preveraud, Thomas. 2022. “Introduction – les mathématiques professionnelles (xvi exix e siècle).” Cahiers François Viète 3 (13):522.10.4000/cahierscfv.3493CrossRefGoogle Scholar
Parshall, Karen H. and Rowe, David E.. 1994. The Emergence of the American Mathematical Research Community 1876–1900: J.J. Sylvester, Felix Klein, and E.H. Moore , History of Mathematics 8. Providence: American Mathematical Society.Google Scholar
Preveraud, Thomas. 2012. “A Course of Mathematics (1798–1841): The American Story of a British Textbook”. In Proceedings of the Second International Conference on the History of Mathematics Education, October 2–5, 2011, edited by Bjarnadottir, Kristin, Fulvia Furinghetti, José M. Matos, and Gert Schubring, 383399. Lisbon: UIED.Google Scholar
Preveraud, Thomas. 2014. “Circulations mathématiques franco-américaines: transferts, réceptions, incorporations et sédimentations (1815–1876).” Ph.D. diss., Université de Nantes.Google Scholar
Preveraud, Thomas. 2016. “Les États-Unis, espace de compromis. L’adaptation des algèbres françaises de Lacroix et Bourdon aux usages domestiques (1818–1835).” Revue d’histoire des mathématiques 22 (2):185221.Google Scholar
Preveraud, Thomas. 2019. “Teaching Descriptive Geometry in the United States (1817–1915): Circulation among Military Engineers, Scholars and Draftsmen.” In Descriptive Geometry: The Spread of a Polytechnic Art, edited by Barbin, Évelyne, Menghini, Marta, and Volkert, Klaus, 339357. Cham: Springer.10.1007/978-3-030-14808-9_19CrossRefGoogle Scholar
Preveraud, Thomas. 2020. “La géométrie descriptive par et pour les carrossiers: un exemple d’appropriation professionnelle d’un savoir mathématique au xix e siècle.” Revue d’histoire des sciences 73 (1):5387.10.3917/rhs.731.0053CrossRefGoogle Scholar
Preveraud, Thomas. 2023. La géométrie en milieu professionnel. Dessiner la voiture à cheval au xix e siècle (France,États-Unis). Paris: Classiques Garnier.Google Scholar
Pycior, Helena. 1989. “British Synthetic vs. French Analytic Styles of Algebra in the Early American Republic.” In The History of Modern Mathematics, vol. 1, edited by David, E. Rowe and McCleary, John, 129137. Boston, MA: Academic Press.Google Scholar
Raj, Kapil. 2007. Relocating Modern Science. Circulation and the Construction of Knowledge in South Asia and Europe, 1650–1900. New York: Palgrave Macmillan.10.1057/9780230625310CrossRefGoogle Scholar
Robertson, John. 1874a. “The French Rule.” The Hub 16 (4):113; 16 (5):140; 16 (6):172; 16 (7):206; 16 (8):235; 16 (9):260.Google Scholar
Robertson, John. 1874b. “Treatise on Body Making.” The Hub 17 (2):38; 17 (3):76; 17 (4):111–112; 17 (6):180–181; 17 (8):254; 17 (9):290.Google Scholar
Robertson, John. 1877. “Working Drawing of a Business Phaeton.” The Hub 19 (2):5758.Google Scholar
Roche, Daniel. 2008. La culture équestre de l’Occident (XVIe–XIXe siècle), le cheval moteur, vol. 1. Paris: Fayard.Google Scholar
Sakarovitch, Joël. 1998. Épures d’architecture: de la coupe des pierres à la géométrie descriptive, XVIe–XIXe siècles. Basel: Birkhäuser.Google Scholar
Sakarovitch, Joël. 2000. “De la modernité de la géométrie descriptive.” In Extenso 18:1123.Google Scholar
Schildbach, Oscar H. 1897. “What Is French Rule.” The Hub 39 (2):88.Google Scholar
Simons, Lao G. 1931. “The Influence of French Mathematicians at the End of the Eighteenth Century upon the Teaching of Mathematics in American Colleges.” ISIS 15 (1):104123.10.1086/346540CrossRefGoogle Scholar
Sonnedecker, Glenn and Griffenhagen, George. 1957. “A History of Sugar-Coated Pills and Tablets.” Journal of the American Pharmaceutical Association 18 (8):486488.Google Scholar
Stratton, Erza M. 1869. “An Important Subject”. The New York Coach-Maker’s Magazine 11 (4):60.Google Scholar
Stratton, Erza M. 1878. The World on Wheels; or, Carriages, with Historical Associations from the Earliest to the Present Time. New York: Stratton.Google Scholar
Struik, Dirk J. 1962. Yankee Science in the Making. New York: Collier Books.Google Scholar
Sugarman, Jane. 1986. “Observations on the Materials and Techniques Used in 19th Century American Architectural Presentation Drawings.” Available at https://cool.culturalheritage.org/coolaic/sg/bpg/annual/v05/bp05-05.html (last accessed March 5. 2024). Online version of “Observations on the Materials and Techniques Used in 19th Century American Architectural Presentation Drawings.” In The Book and Paper Group Annual, 5. Washington, D.C.: The American Institute for Conservation.Google Scholar
Thomas, Brice. 1869–1870. “Traité de menuiserie en voitures.” Le guide du carrossier 76:24; 77:14–16; 78:23–32; 79:40; 80:45; 81:54–65; 84:87–104; 85:111–112.Google Scholar
Thomas, Brice. 1870. Traité de menuiserie en voitures, vol. 1. Paris: Thomas.Google Scholar
Thomas, Brice. 1874. “The Guide du Carrossier.” The Hub 16 (6):167.Google Scholar
Ware, Isaac. 1879. “The French Rule.” The Carriage Monthly 15 (9):176.Google Scholar
Warren, Samuel E. 1860. General Problems from the Orthographic Projections of Descriptive Geometry. New York: Wiley.Google Scholar
Xu, Yibao. 2005. “The First Chinese Translation of the Last Nine Books of Euclid’s Elements and its Source.” Historia Mathematica 32 (1):432.10.1016/j.hm.2003.12.002CrossRefGoogle Scholar