No CrossRef data available.
Published online by Cambridge University Press: 24 March 2014
In this paper, a novel control scheme is proposed to guarantee position and force tracking in nonlinear teleoperation systems subject to varying communication delays. Stability and tracking performance of the teleoperation system are proved using a proposed Lyapunov–Krasovskii functional. To show its effectiveness, the teleoperation controller is simulated on a pair of planar 2-DOF (degree of freedom) robots and experimented on a pair of 3-DOF PHANToM Premium 1.5A robots connected via a communication channel with time-varying delays. Both the planar robots in simulations and the PHANToM robots in experiments possess nonlinear dynamics.
The video clip shows experimental setup with gravity compensation on free-motion and contact-motion test of two PHANToM Premium 1.5A robots in teleoperation. To show the performances of the proposed method, the master and slave positions and the operator and environment forces are plotted in synchrony with the free-motion or contact-motion tests.