Hostname: page-component-54dcc4c588-54gsr Total loading time: 0 Render date: 2025-10-03T10:46:14.088Z Has data issue: false hasContentIssue false

A novel cable-driven serial robot based on flexible joints and tensegrity structures

Published online by Cambridge University Press:  01 October 2025

Da Song
Affiliation:
School of Mechanical Engineering, Northeast Electric Power University, Jilin, China
Haochen Wang*
Affiliation:
School of Mechanical Engineering, Northeast Electric Power University, Jilin, China
Ming Lu
Affiliation:
School of Mechanical Engineering, Northeast Electric Power University, Jilin, China
Hong Chen
Affiliation:
School of Automation Engineering, Northeast Electric Power University, Jilin, China
Lixun Zhang
Affiliation:
College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
*
Corresponding author: Haochen Wang; Email: 15831031177@163.com

Abstract

The study presents a novel cable-driven serial robot based on flexible joints and tensegrity structures, which features a rapid response capability in complex dynamic environments. This makes it particularly suitable for human–robot interaction scenarios. Compared to traditional rigid serial robots, the design’s compliance demonstrates significant advantages in addressing complex demands. The study delves into kinematic and dynamic modeling methods and verifies their effectiveness through simulations. The kinematic model transforms the local coordinate system to the global one using general kinematic equations. First, the static and dynamic model of the robot is derived based on the torque balance equation, and then the dynamic model of the robot is constructed. By simplifying the robot model, the relationship between tension values from driving cables and the robot’s workspace is analyzed under the constraints of tensegrity structures and flexible joints. Additionally, trajectory simulations validate the kinematic and dynamic models. The kinetic energy variation curves based on the trajectories confirm the accuracy of the theoretical analysis. This method demonstrates broad applicability and can be applied to other serial robots with flexible structures, offering effective solutions for use in complex dynamic environments.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Babin, V. and Gosselin, C., “Mechanisms for robotic grasping and manipulation,” Ann. Rev. Contr. Robot. Auton. Syst. 4(1), 573593 (2021).10.1146/annurev-control-061520-010405CrossRefGoogle Scholar
Iqbal, J., Islam, R. U. and Khan, H., “Modeling and analysis of a 6 DOF robotic arm manipulator Canadian,” J. Electr. Electron. Eng. 3(6), 300306 (2012).Google Scholar
Ding, L., Niu, L., Su, Y., Yang, H., Liu, G., Gao, H. and Deng, Z., “Dynamic finite element modeling and simulation of soft robots,” Chin. J. Mech. Eng. 35(1), 24 (2022).10.1186/s10033-022-00701-8CrossRefGoogle Scholar
Giannaccini, M. E., Xiang, C., Atyabi, A., Theodoridis, T., Nefti-Meziani, S. and Davis, S., “Novel design of a soft lightweight pneumatic continuum robot arm with decoupled variable stiffness and positioning,” Soft Robot. 5(1), 5470 (2018).10.1089/soro.2016.0066CrossRefGoogle ScholarPubMed
Yang, C., Geng, S., Walker, I., Branson, D. T., Liu, J., Dai, J. S. and Kang, R., “Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness,” Int. J. Robot. Res. 39(14), 16201634 (2020).10.1177/0278364920913929CrossRefGoogle Scholar
Kang, R., Branson, D. T., Zheng, T., Guglielmino, E. and Caldwell, D. G., “Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures,” Bioinspir. Biomim. 8(3), 036008 (2013).10.1088/1748-3182/8/3/036008CrossRefGoogle ScholarPubMed
Song, D., Xiao, X., Li, G., Zhang, L., Xue, F. and Li, L., “Modeling and control strategy of a haptic interactive robot based on a cable-driven parallel mechanism,” Mech. Sci. 14(1), 1932 (2023).10.5194/ms-14-19-2023CrossRefGoogle Scholar
Bhalkikar, A., Lokesh, S. and Ashwin, K., “Kinematic models for Cable-driven Continuum Robots with multiple segments and varying cable offsets,” Mech. Mach. Theory 200, 105701 (2024).10.1016/j.mechmachtheory.2024.105701CrossRefGoogle Scholar
Fang, H., Chen, H., Tan, R., Ge, L., Zhao, T., Wang, H., Yuan, S. and Wang, D., “A CuO/MoO3-based SO2 gas sensor with moisture resistance and ultra-fast response at 90°C,” Sens. Actuat. B Chem. 422, 136627 (2025).10.1016/j.snb.2024.136627CrossRefGoogle Scholar
Webster, R. J. III and Jones, B. A., “Design and kinematic modeling of constant curvature continuum robots: A review,” Int. J. Robot. Res. 29(13), 16611683 (2010).10.1177/0278364910368147CrossRefGoogle Scholar
Renda, F., Cianchetti, M., Giorelli, M., Arienti, A. and Laschi, C., “A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm,” Bioinspir. Biomim. 7(2), 025006 (2012).10.1088/1748-3182/7/2/025006CrossRefGoogle ScholarPubMed
Song, D., Lu, M., Zhao, L., Sun, Z., Wang, H. and Zhang, L., “A novel real-time tension distribution method for cable-driven parallel robots,” Robotica 42, 36923708 (2024).10.1017/S0263574724001590CrossRefGoogle Scholar
Liu, Y., Shi, W., Chen, P., Cheng, L., Ding, Q. and Deng, Z., “Variable curvature modeling method of soft continuum robots with constraints,” Chin. J. Mech. Eng. 36(1), 148 (2023).10.1186/s10033-023-00967-6CrossRefGoogle Scholar
Song, D., Sun, Z., Zhao, L., Lu, M., Wang, H. and Zhang, L., “Optimization design method for vibration reduction of frame structure of cable-driven parallel robot,” Int. J. Acoust. Vibrat. 29(2), 148160 (2024).10.20855/ijav.2024.29.22042CrossRefGoogle Scholar
Jones, B. A. and Walker, I. D., “Kinematics for multisection continuum robots,” IEEE Trans. Robot. 22(1), 4355 (2006).10.1109/TRO.2005.861458CrossRefGoogle Scholar
Xu, K. and Simaan, N., “Intrinsic wrench estimation and its performance index for multisegment continuum robots,” IEEE Trans. Robot. 26(3), 555561 (2010).Google Scholar
Song, D., Lu, M., Zhao, L., Sun, Z., Wang, H. and Zhang, L.. “A Novel Design Method for a Reconfigurable Two-drive Cable-driven Parallel Robot.” In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science (2024).10.1177/09544062241293253CrossRefGoogle Scholar
Falkenhahn, V., Mahl, T., Hildebrandt, A., Neumann, R. and Sawodny, O., “Dynamic modeling of bellows-actuated continuum robots using the Euler–Lagrange formalism,” IEEE Trans. Robot. 31(6), 14831496 (2015).10.1109/TRO.2015.2496826CrossRefGoogle Scholar
Trivedi, D., Lotfi, A. and Rahn, C. D., “Geometrically exact models for soft robotic manipulators,” IEEE Trans. Robot. 24(4), 773780 (2008).10.1109/TRO.2008.924923CrossRefGoogle Scholar
Camarillo, D. B., Milne, C. F., Carlson, C. R., Zinn, M. R. and Salisbury, J. K., “Mechanics modeling of tendon-driven continuum manipulators,” IEEE Trans. Robot. 24(6), 12621273 (2008).10.1109/TRO.2008.2002311CrossRefGoogle Scholar
Rone, W. S. and Ben-Tzvi, P., “Continuum robot dynamics utilizing the principle of virtual power,” IEEE Trans. Robot. 30(1), 275287 (2013).10.1109/TRO.2013.2281564CrossRefGoogle Scholar
Falkenhahn, V., Hildebrandt, A., Neumann, R. and Sawodny, O., “Dynamic control of the bionic handling assistant,” IEEE/ASME Trans. Mechatron. 22(1), 617 (2016).10.1109/TMECH.2016.2605820CrossRefGoogle Scholar
Renda, F., Boyer, F., Dias, J. and Seneviratne, L., “Discrete cosserat approach for multisection soft manipulator dynamics,” IEEE Trans. Robot. 34(6), 15181533 (2018).10.1109/TRO.2018.2868815CrossRefGoogle Scholar
Yang, J., Peng, H., Zhou, W., Zhang, J. and Wu, Z., “A modular approach for dynamic modeling of multisegment continuum robots,” Mech. Mach. Theory 165, 104429 (2021).10.1016/j.mechmachtheory.2021.104429CrossRefGoogle Scholar
Sadati, S. H., Naghibi, S. E., Shiva, A., Michael, B., Nanayakkara, T. and Zschaler, S., “TMTDyn: A Matlab package for modeling and control of hybrid rigid–continuum robots based on discretized lumped systems and reduced-order models,” Int. J. Robot. Res. 40(1), 296347 (2021).10.1177/0278364919881685CrossRefGoogle Scholar
Grazioso, S., Di Gironimo, G. and Siciliano, B., “A geometrically exact model for soft continuum robots: The finite element deformation space formulation,” Soft Robot. 6(6), 790811 (2019).10.1089/soro.2018.0047CrossRefGoogle ScholarPubMed
Yang, J., Harsono, E. and Yu, H., “Dynamic modeling and validation of a hybrid-driven continuum robot with antagonistic mechanisms,” Mech. Mach. Theory 197, 105635 (2024).10.1016/j.mechmachtheory.2024.105635CrossRefGoogle Scholar
Luo, R., Yuan, J., Hu, Z., Du, L., Bao, S. and Zhou, M., “Lie-theory-based dynamic model identification of serial robots considering nonlinear friction and optimal excitation trajectory,” Robotica 42, 35523569 (2024).10.1017/S0263574724001541CrossRefGoogle Scholar
Godage, I. S., Wirz, R., Walker, I. D. and Webster, R. J. III, “Accurate and efficient dynamics for variable-length continuum arms: A center of gravity approach,” Soft Robot. 2(3), 96106 (2015).10.1089/soro.2015.0006CrossRefGoogle Scholar
Liu, F., Huang, H., Li, B., Hu, Y. and Jin, H., “Design and analysis of a cable-driven rigid–flexible coupling parallel mechanism with variable stiffness,” Mech. Mach. Theory 153, 104030 (2020).10.1016/j.mechmachtheory.2020.104030CrossRefGoogle Scholar
Mu, Z., Yuan, H., Xu, W., Liu, T. and Liang, B., “A segmented geometry method for kinematics and configuration planning of spatial hyper-redundant manipulators,” IEEE Trans. Syst. Man Cybern. Syst. 50(5), 17461756 (2018).10.1109/TSMC.2017.2784828CrossRefGoogle Scholar
Tiefeng, S., Mingyu, D., Guanjun, B., Libin, Z. and Qinghua, Y., “Fruit harvesting continuum manipulator inspired by elephant trunk,” Int. J. Agric. Biol. Eng. 8(1), 5763 (2015).Google Scholar
Zhang, J., Li, Y., Kan, Z., Yuan, Q., Rajabi, H., Wu, Z., Peng, H. and Wu, J., “A preprogrammable continuum robot inspired by elephant trunk for dexterous manipulation,” Soft Robot. 10(3), 636646 (2023).10.1089/soro.2022.0048CrossRefGoogle ScholarPubMed
Zheng, T., Branson, D. T., Guglielmino, E., Kang, R., Cerda, G. A. M., Cianchetti, M., Follador, M., Godage, I. S. and Caldwell, D. G., “Model validation of an octopus inspired continuum robotic arm for use in underwater environments,” J. Mechan. Robot. 5(2), 021004 (2013).10.1115/1.4023636CrossRefGoogle Scholar