Hostname: page-component-5447f9dfdb-89v5q Total loading time: 0 Render date: 2025-07-28T08:15:56.522Z Has data issue: false hasContentIssue false

Design, fabrication, and control techniques of a four-DOF robotic wrist-hand exoskeleton

Published online by Cambridge University Press:  28 July 2025

Meby Mathew
Affiliation:
Mechatronics/ Robotics Laboratory, Department of Mechanical Engineering National Institute of Technology Calicut, Calicut, Kerala, India Department of Mechanical Engineering, Amal Jyothi College of Engineering Kanjirapally, Kottayam, Kerala, India
S. Kishore
Affiliation:
Mechatronics/ Robotics Laboratory, Department of Mechanical Engineering National Institute of Technology Calicut, Calicut, Kerala, India
C. S. Aswin Sekhar
Affiliation:
Mechatronics/ Robotics Laboratory, Department of Mechanical Engineering National Institute of Technology Calicut, Calicut, Kerala, India
Vivek Pankaj
Affiliation:
Mechatronics/ Robotics Laboratory, Department of Mechanical Engineering National Institute of Technology Calicut, Calicut, Kerala, India
A. P. Sudheer*
Affiliation:
Mechatronics/ Robotics Laboratory, Department of Mechanical Engineering National Institute of Technology Calicut, Calicut, Kerala, India
*
Corresponding author: A. P. Sudheer; Email: apsudheer@nitc.ac.in

Abstract

A wrist-hand exoskeleton designed to assist individuals with wrist and hand limitations is presented in this paper. The novel design is developed based on specific selection criteria, addressing all the Degrees of Freedom (DOF). In the conceptual design phase, design concepts are created and assessed before being screened and scored to determine which concept is the most promising. Performance and possible restrictions are assessed using kinematic and dynamic analysis. Using polylactic acid material, the exoskeleton is prototyped to ensure structural integrity and fit. Manual control, master-slave control, and electroencephalography (EEG) dataset-based control are among the control strategies that have been investigated. Direct manipulation is possible with manual control, nevertheless, master-slave control uses sensors to map user motions. Brain signals for hand opening and closing are interpreted by EEG dataset-based control, which manages the hand open-close of the exoskeleton. This study introduces a novel wrist-hand exoskeleton that improves usefulness, modularity, and mobility. While the numerous control techniques give versatility based on user requirements, the 3D printing process assures personalization and flexibility in design.

Information

Type
Research Article
Copyright
© The Author(s) 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Okajima, S., Alnajjar, F. S., Costa, Á., Asin-Prieto, G., Pons, J. L., Moreno, J. C., Hasegawa, Y. and Shimoda, S., “Theoretical approach for designing the rehabilitation robot controller,” Adv. Robot. 33(14), 674686 (2019).CrossRefGoogle Scholar
Yang, L., Zhang, F. and Fu, Y., “A cable-driven elbow exoskeleton with variable stiffness actuator for upper limb rehabilitation,” Robotica 43(2), 662679 (2025). doi: 10.1017/S026357472400211X.CrossRefGoogle Scholar
Shaaban, H., Pereira, C. , Williams, R. and Lees, V.C., The effect of ejolbow position on the range of supination and pronation of the forearm. J. Hand Surg. Eur. 33, 38 (2008).CrossRefGoogle ScholarPubMed
Youm, Y., Dryer, R. F., Thambyrajah, K., Flatt, A. E. and Sprague, B. L., “Biomechanical analyses of forearm pronation-supination and elbow flexion-extension,” J. Biomech. 12(4), 245255 (1979). doi: 10.1016/0021-9290(79)90067-8.CrossRefGoogle ScholarPubMed
Kim, B. and Deshpande, A. D., “An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation,” Int. J. Rob. Res. 36(4), 414435 (2017).10.1177/0278364917706743CrossRefGoogle Scholar
Oblak, J., Cikajlo, I. and Matjaĉić, Z., “Universal haptic drive: A robot for arm and wrist rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 293302 (2010).10.1109/TNSRE.2009.2034162CrossRefGoogle ScholarPubMed
Gupta, A., O‘Malley, M. K., Patoglu, V. and Burgar, C., “Design, control and performance of RiceWrist: A force feedback wrist exoskeleton for rehabilitation and training,” Int. J. Rob. Res. 27(2), 233251 (2008).10.1177/0278364907084261CrossRefGoogle Scholar
Huamanchahua, D., Toledo-Garcia, P., Aguirre, J. and Huacre, S., “Hand Exoskeletons for Rehabilitation: A Systematic Review,” In: 2022 IEEE Int IOT, Electron Mechatronics Conf IEMTRONICS 2022 (2022) pp. 16.Google Scholar
Perrelli, M., Lago, F., Garofalo, S., Bruno, L., Mundo, D. and Carbone, G., “A critical review and systematic design approach for innovative upper-limb rehabilitation devices,” Rob. Auton. Syst. 183, 104835 (2025).Google Scholar
Galbert, A. and Active, B. A., “Actuated, and assistive: A scoping review of exoskeletons for the hands and wrists,” Can. Prosthetics Orthot. J. 7(1), 122 (2024).CrossRefGoogle ScholarPubMed
Amirabdollahian, F., Ates, S., Basteris, A., Cesario, A., Buurke, J., Hermens, H., Hofs, D., Johansson, E., Mountain, G., Nasr, N., Nijenhuis, S., Prange, G., Rahman, N., Sale, P., Schätzlein, F., van Schooten, B. and Stienen, A., “Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke - SCRIPT project,” Robotica 32(8), 13311346 (2014).10.1017/S0263574714002288CrossRefGoogle Scholar
Rahman, M. H., Rahman, M. J., Cristobal, O. L., Saad, M., Kenné, J. P. and Archambault, P. S., “Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements,” Robotica 33(1), 1939 (2015).10.1017/S0263574714000034CrossRefGoogle Scholar
Bajaj, N. M., Spiers, A. J. and Dollar, A. M., “State of the art in artificial wrists: A review of prosthetic and robotic wrist design,” IEEE Trans. Robot. 35(1), 261277 (2019).10.1109/TRO.2018.2865890CrossRefGoogle Scholar
Fan, H., Wei, G. and Ren, L., “Prosthetic and robotic wrists comparing with the intelligently evolved human wrist: A review,” Robotica 40(11), 41694191 (2022).10.1017/S0263574722000856CrossRefGoogle Scholar
Iqbal, J., Ahmad, O. and Malik, A., “HEXOSYS II -Towards Realization of Light Mass Robotics for the Hand,” In: Proc 14th IEEE Int Multitopic Conf 2011, INMIC 2011 (2011) pp. 115119.Google Scholar
Chiri, A., Giovacchini, F., Vitiello, N., Cattin, E., Roccella, S., Vecchi, F. and Carrozza, M.C., “HANDEXOS: Towards an Exoskeleton Device for the Rehabilitation of the Hand,” In: 2009 IEEE/RSJ Int Conf Intell Robot Syst IROS 2009 (2009) pp. 11061111.Google Scholar
Cempini, M., Cortese, M. and Vitiello, N., “A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes,” IEEE/ASME Trans. Mechatron. 20(2), 705716 (2015).CrossRefGoogle Scholar
Gupta, A., Singh, A., Verma, V., Mondal, A. K. and Gupta, M. K., “Developments and clinical evaluations of robotic exoskeleton technology for human upper-limb rehabilitation,” Adv. Robot. 34(15), 10231040 (2020).CrossRefGoogle Scholar
Barria, P., Riquelme, M. D.;as, Reppich, H., Cisnal, A., Fraile, J.-C., Pérez-Turiel, J., Sierra, D., Aguilar, R., Andrade, A. and Nuñez-Espinosa, C., “Hand rehabilitation based on the RobHand exoskeleton in stroke patients: A case series study,” Front. Robot. AI 10, 115 (2023).CrossRefGoogle ScholarPubMed
Agarwal, P., Neptune, R. R. and Deshpande, A. D., “A simulation framework for virtual prototyping of robotic exoskeletons,” J. Biomech. Eng. 138(6), 061004 (2016). doi: 10.1115/1.4033177.CrossRefGoogle ScholarPubMed
Alhamad, R., Seth, N. and Abdullah, H. A., “Initial testing of robotic exoskeleton hand device for stroke rehabilitation,” Sensors 23(14), 6339 (2023). doi: 10.3390/s23146339.CrossRefGoogle ScholarPubMed
Singh, N., Saini, M., Kumar, N., Srivastava, M. V. P. and Mehndiratta, A., “Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: A randomized controlled trial,” J. Neuroeng. Rehabil. 18(1), 115 (2021).10.1186/s12984-021-00867-7CrossRefGoogle ScholarPubMed
Ridremont, T., Singh, I., Bruzek, B., Erel, V., Jamieson, A., Gu, Y., Merzouki, R. and Wijesundara, M. B. J., “Soft robotic bilateral rehabilitation system for hand and wrist joints,” Machines 12(5), 114 (2024).10.3390/machines12050288CrossRefGoogle Scholar
Sánchez-Velasco, L. E., Arias-Montiel, M., Guzmán-Ramírez, E. and Lugo-González, E., “A low-cost EMG-controlled anthropomorphic robotic hand for power and precision grasp,” Biocybern. Biomed. Eng. 40(1), 221237 (2020).10.1016/j.bbe.2019.10.002CrossRefGoogle Scholar
Liu, C., Liang, H., Murata, Y., Li, P., Ueda, N., Matsuzawa, R. and Zhu, C., “A wearable lightweight exoskeleton with full degrees of freedom for upper-limb power assistance,” Adv. Robot. 35(7), 413424 (2021).10.1080/01691864.2020.1854115CrossRefGoogle Scholar
Mathew, M., Thomas, M. J., Navaneeth, M. G., Sulaiman, S., Amudhan, A. N. and Sudheer, A. P., “A systematic review of technological advancements in signal sensing, actuation, control and training methods in robotic exoskeletons for rehabilitation,” Ind. Rob. 50(3), 432455 (2023).10.1108/IR-09-2022-0239CrossRefGoogle Scholar
Wang, W. D., Zhang, J. B., Wang, X., Yuan, X. Q. and Zhang, P., “Motion intensity modeling and trajectory control of upper limb rehabilitation exoskeleton robot based on multi-modal information,” Complex. Intell. Syst. 8(3), 20912103 (2022).10.1007/s40747-021-00632-2CrossRefGoogle Scholar
Pooja, , Pahuja, S. K. and Veer, K., “Recent approaches on classification and feature extraction of EEG signal: A review,” Robotica 40(1), 77101 (2022).CrossRefGoogle Scholar
Garrett, J. W., “Google Scholar
Sunil, M. M. and Sudheer, A. P., “Concept Selection and Kinematic Modeling of Hand Rehabilitation Robotic Device,” In: IOP Conference Series: Materials Science and Engineering. IOP Conf. Ser.: Mater. Sci. Eng. (2021) pp. 1132.Google Scholar
Luh, J. Y. S., Walker, M. W. and Paul, R. P. C., “On-line computational scheme for i,” J. Dyn. Syst. Meas. Control 102(2), 6976 (1980).CrossRefGoogle Scholar
Li, Y., Yan, L., Qian, H., Wu, J., Men, S. and Li, N., “Dynamics and kinematics analysis and simulation of lower extremity power-assisted exoskeleton,” J. Vibroeng. 16, 781791 (2014).Google Scholar
Mokhtari, M., Taghizadeh, M. and Mazare, M., “Hybrid adaptive robust control based on CPG and ZMP for a lower limb exoskeleton,” Robotica 39(2), 181199 (2021).CrossRefGoogle Scholar
Tayyari, F. and Smith, J. L. P., Occupational ergonomics: Principles and applications. Available at https://cir.nii.ac.jp/crid/1130282271848744704 (1997) (accessed 14 April 2025).Google Scholar
Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K. and Stanley, H. E., “PhysioBank, PhysioToolkit, and PhysioNet,” Circulation 101(23), e215e220 (2000). doi: 10.1161/01.cir.101.23.e215.CrossRefGoogle ScholarPubMed
Schalk, G., Mcfarland, D. J., Hinterberger, T., Birbaumer, N. and Wolpaw, J.R., BCI2000: A general-purpose brain-computer interface (BCI) system, IEEE Trans. Biomed. Eng. 51, 10341043 (2004).10.1109/TBME.2004.827072CrossRefGoogle ScholarPubMed
Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W. and Ball, T., “Deep learning with convolutional neural networks for EEG decoding and visualization,” Hum. Brain Mapp. 38(11), 53915420 (2017).CrossRefGoogle ScholarPubMed
Krizhevsky, B. A., Sutskever, I. and Hinton, G. E., “ImageNet classification with deep convolutional neural networks,” Commun. ACM 60(6), 8490 (2012).10.1145/3065386CrossRefGoogle Scholar
Sandoval-Gonzalez, O., Jacinto-Villegas, J., Herrera-Aguilar, I., Portillo-Rodiguez, O., Tripicchio, P., Hernandez-Ramos, M., Flores-Cuautle, A. D. and Avizzano, C., “Design and development of a hand exoskeleton robot for active and passive rehabilitation,” Int. J. Adv. Robot. Syst. 13(66), 112 (2016). doi: 10.5772/62404.CrossRefGoogle Scholar
Doğan, M., Koçak, M., Onursal Kılınç, Ö., Ayvat, F., Sütçü, G. C., Ayvat, E., Kılınç, M., Ünver, Ö. and Aksu Yıldırım, S., “Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors,” Gait Posture 70, 141147 (2019).CrossRefGoogle ScholarPubMed
Taylor, S. A. F., Kedgley, A. E., Humphries, A. and Shaheen, A. F., “Simulated activities of daily living do not replicate functional upper limb movement or reduce movement variability,” J. Biomech. 76, 119128 (2018).10.1016/j.jbiomech.2018.05.040CrossRefGoogle ScholarPubMed
Bomfim, M. H. S., Monteiro, N. S. and Lima, E. J., “Modelling, simulation and implementation of a hybrid model reference adaptive controller applied to a manipulator driven by pneumatic artificial muscles,” Robotica 40(6), 18941918 (2022).10.1017/S0263574721001442CrossRefGoogle Scholar