No CrossRef data available.
Published online by Cambridge University Press: 25 July 2025
The remote center of motion (RCM) mechanism is one of the key components of minimally invasive surgical robots. Nevertheless, the most widely used parallelogram-based RCM mechanism tends to have a large footprint, thereby increasing the risk of collisions between the robotic arms during surgical procedures. To solve this problem, this study proposes a compact RCM mechanism based on the coupling of three rotational motions realized by nonlinear transmission. Compared to the parallelogram-based RCM mechanism, the proposed design offers a smaller footprint, thereby reducing the risk of collisions between the robotic arms. To address the possible errors caused by the elasticity of the transmission belts, an error model is established for the transmission structure that includes both circular and non-circular pulleys. A prototype is developed to verify the feasibility of the proposed mechanism, whose footprint is further compared with that of the parallelogram-based RCM mechanism. The results indicate that our mechanism satisfies the constraints of minimally invasive surgery, provides sufficient stiffness, and exhibits a more compact design. The current study provides a new direction for the miniaturization design of robotic arms in minimally invasive surgical robots.