Hostname: page-component-54dcc4c588-trf7k Total loading time: 0 Render date: 2025-10-10T08:30:45.023Z Has data issue: false hasContentIssue false

Bioinspired multi-joint hybrid finger: fabric-reinforced pneumatic actuation for adaptive and human-like grasping

Published online by Cambridge University Press:  31 July 2025

Junqing Yin*
Affiliation:
School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an, China
Jinlong Li
Affiliation:
School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an, China
Siqi Niu
Affiliation:
China Railway International Multimodal Transport Co., Ltd, Beijing, China
Qingqing Xu
Affiliation:
Suqian University, Suqian, China Jiangsu Engineering Research Center of Key Technology for Intelligent Manufacturing Equipment, Suqian, China
*
Corresponding author: Junqing Yin; Email: jqyin@xpu.edu.cn

Abstract

The human hand’s exceptional dexterity and compliance, derived from its rigid-soft coupling structure and tendon-driven interphalangeal coordination, inspire robotic grippers capable of versatile grasping and force adaptation. Traditional rigid manipulators lack compliance for delicate tasks, while soft robots often suffer from instability and low load capacity. To bridge this gap, we propose a biomimetic multi-joint composite finger integrating a 3D-printed rigid phalanges (46–51 mm) with dual fabric-reinforced pneumatic bladders, mimicking human finger biomechanics. This hybrid design combines hinge-jointed rigidity and anisotropic fabric constraints, enabling two rotational degrees of freedom with higher radial stiffness, achieving 2.18× higher critical burst pressure (240 kPa) than non-reinforced bladders, while preserving axial compliance. Experimental validation demonstrates a 4.77 N maximum fingertip force at 200 kPa and rapid recovery (< 2s) post-impact. The composite finger exhibits human-like gestures (enveloping, pinching, flipping) and adapts to irregular/fragile objects (e.g., eggs, screws) through coordinated bladder actuation. Assembled into a modular gripper, it sustains 1 kg payloads and executes thin-object flipping via proximal-distal joint synergy. This rigid-soft coupling design bridges compliance and robustness, offering high environmental adaptability for applications in industrial automation, human–robot interaction, and delicate manipulation.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Zhu, T., Wu, R., Hang, J., Lin, X. and Sun, Y., “Toward human-like grasp: Functional grasp by dexterous robotic hand via object-hand semantic representation,” IEEE Trans. Pattern Anal. 45(10), 1252112534 (2023).CrossRefGoogle ScholarPubMed
Becker, K., Teeple, C., Charles, N., Jung, Y., Baum, D., Weaver, J. C., Mahadevan, L. and Wood, R., “Active entanglement enables stochastic, topological grasping,” Proc. Natl. Acad. Sci. 119(42), e2209819119 (2022).CrossRefGoogle ScholarPubMed
Qu, J., Mao, B., Li, Z., Xu, Y., Zhou, K., Cao, X., Fan, Q., Xu, M., Liang, B., Liu, H., Wang, X. and Wang, X., “Recent progress in advanced tactile sensing technologies for soft grippers,” Adv. Funct. Mater. 33(41), 2306249 (2023).CrossRefGoogle Scholar
Kim, U., Jung, D., Jeong, H., Park, J., Jung, H.-M., Cheong, J., Choi, H. R., Do, H. and Park, C., “Integrated linkage-driven dexterous anthropomorphic robotic hand,” Nat. Commun. 12(1), 7177 (2021).CrossRefGoogle ScholarPubMed
Hong, M. B., Kim, S. J., Ihn, Y. S., Jeong, G.-C. and Kim, K., “KULEX-hand: An underactuated wearable hand for grasping power assistance,” IEEE Trans. Robot 35(2), 420432 (2018).CrossRefGoogle Scholar
Mannam, P., Kroemer, O. and Temel, F. Z.. Characterization of compliant parallelogram links for 3D-printed delta manipulators[C]//Experimental Robotics. In: The 17th International Symposium (Springer International Publishing, 2021) pp. 7584.Google Scholar
Tai, K., El-Sayed, A. R., Shahriari, M., Biglarbegian, M. and Mahmud, S., “State of the art robotic grippers and applications,” Robotics 5(2), 11 (2016).CrossRefGoogle Scholar
Yin, R., Wang, D., Zhao, S., Lou, Z. and Shen, G., “Wearable sensors-enabled human-machine interaction systems: From design to application,” Adv. Funct. Mater. 31(11), 2008936 (2021).CrossRefGoogle Scholar
Grebenstein, M., Chalon, M., Friedl, W., Haddadin, S., Wimböck, T., Hirzinger, G. and Siegwart, R., “The hand of the DLR hand arm system: Designed for interaction,” Int. J. Robot. Res. 31(13), 15311555 (2012).CrossRefGoogle Scholar
Bicchi, A., “Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity,” IEEE Trans. Robot. Autom. 16(6), 652662 (2000).CrossRefGoogle Scholar
Laschi, C., Mazzolai, B. and Cianchetti, M., “Soft robotics: Technologies and systems pushing the boundaries of robot abilities,” Sci. Robot. 1(1), eaah3690 (2016).CrossRefGoogle ScholarPubMed
Xie, Z., Domel, A. G., An, N., Green, C., Gong, Z., Wang, T., Knubben, E. M., Weaver, J. C., Bertoldi, K. and Wen, L., “Octopus arm-inspired tapered soft actuators with suckers for improved grasping,” Soft Robot. 7(5), 639648 (2020).CrossRefGoogle ScholarPubMed
Kim, Y., Parada, G. A., Liu, S. and Zhao, X., “Ferromagnetic soft continuum robots,” Sci. Robot. 4(33), eaax7329 (2019).CrossRefGoogle ScholarPubMed
Xie, Z., Chen, B., Liu, J., Yuan, F., Shao, Z., Yang, H., Domel, A. G., Zhang, J. and Wen, L., “A tapered soft robotic oropharyngeal swab for throat testing: A new way to collect sputa samples,” IEEE Robot. Autom. Mag. 28(1), 90100 (2021).CrossRefGoogle Scholar
Wang, W., Yu, C. Y., Abrego Serrano, P. A. and Ahn, S.-H., “Shape memory alloy-based soft finger with changeable bending length using targeted variable stiffness,” Soft Robot. 7(3), 283291 (2020).CrossRefGoogle ScholarPubMed
Shintake, J., Cacucciolo, V., Floreano, D. and Shea, H., “Soft robotic grippers,” Adv. Mater. 30(29), 1707035 (2018).CrossRefGoogle Scholar
Tawk, C., Gillett, A., in het Panhuis, M., Spinks, G. M. and Alici, G., “A 3D-printed omni-purpose soft gripper,” IEEE Trans. Robot. 35(5), 12681275 (2019).CrossRefGoogle Scholar
Langowski J.K., A., Sharma, P. and Shoushtari, A. L., “In the soft grip of nature,” Sci. Robot. 5(49), eabd9120 (2020).CrossRefGoogle ScholarPubMed
Subramaniam, V., Jain, S., Agarwal, J. and Valdivia y Alvarado, P., “Design and characterization of a hybrid soft gripper with active palm pose control,” Int. J. Robot. Res. 39(14), 16681685 (2020).CrossRefGoogle Scholar
Cianchetti, M., Laschi, C., Menciassi, A. and Dario, P., “Biomedical applications of soft robotics,” Nat. Rev. Mater. 3(6), 143153 (2018).CrossRefGoogle Scholar
Lau, G. K., Heng, K. R., Ahmed, A. S. and Shrestha, M., “Dielectric elastomer fingers for versatile grasping and nimble pinching,” Appl. Phys. Lett. 110(18), (2017).CrossRefGoogle Scholar
Yang, Y., Vella, K. and Holmes, D. P., “Grasping with kirigami shells,” Sci. Robot. 6(54), eabd6426 (2021).CrossRefGoogle ScholarPubMed
Kellaris, N., Rothemund, P., Zeng, Y., Mitchell, S. K., Smith, G. M., Jayaram, K. and Keplinger, C., “Spider-inspired electrohydraulic actuators for fast, soft-actuated joints,” Adv. Sci. 8(14), 2100916 (2021).CrossRefGoogle ScholarPubMed
Yang, Y., Zhang, Y., Kan, Z., Zeng, J. and Wang, M. Y., “Hybrid jamming for bioinspired soft robotic fingers,” Soft Robot. 7(3), 292308 (2020).CrossRefGoogle ScholarPubMed
Wei, Y., Chen, Y., Ren, T., Chen, Q., Yan, C., Yang, Y. and Li, Y., “A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming,” Soft Robot. 3(3), 134143 (2016).CrossRefGoogle Scholar
Shintake, J., Schubert, B., Rosset, S., Shea, H. and Floreano, D.. Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2015) pp. 10971102.CrossRefGoogle Scholar
Connolly, F., Walsh, C. J. and Bertoldi, K., “Automatic design of fiber-reinforced soft actuators for trajectory matching,” Proc. Natl. Acad. Sci. 114(1), 5156 (2017).CrossRefGoogle ScholarPubMed
Ferrandy, V., Indrawanto, , Ferryanto, F., Sugiharto, A., Franco, E., Garriga-Casanovas, A., Mahyuddin, A. I., Rodriguez y Baena, F., Mihradi, S. and Virdyawan, V., “Modeling of a two-degree-of-freedom fiber-reinforced soft pneumatic actuator,” Robotica 41(12), 36083626 (2023).CrossRefGoogle Scholar
Hu, Q., Huang, H., Dong, E. and Sun, D., “A bioinspired composite finger with self-locking joints,” IEEE Robot. Autom. Lett. 6(2), 13911398 (2021).CrossRefGoogle Scholar
Serrano, D., Copaci, D., Arias, J., Moreno, L. E. and Blanco, D., “SMA-based soft exo-glove,” IEEE Robot. Autom. Lett. 8(9), 54485455 (2023).CrossRefGoogle Scholar
Bhat, A., Jaipurkar, S. S., Low, L. T. and Yeow, R. C.-H., “Reconfigurable soft pneumatic actuators using extensible fabric-based skins,” Soft Robot. 10(5), 923936 (2023).CrossRefGoogle ScholarPubMed
Zhang, Y., Zhang, W., Yang, J. and Pu, W., “Bioinspired soft robotic fingers with sequential motion based on tendon-driven mechanisms,” Soft Robot. 9(3), 531541 (2022).CrossRefGoogle ScholarPubMed
Doghri, I.. Mechanics of Deformable Solids: Linear, Nonlinear, Analytical and Computational Aspects (Springer Science & Business Media, 2000).CrossRefGoogle Scholar
Basumatary, H. and Hazarika, S. M., “Design optimization of an underactuated tendon-driven anthropomorphic hand based on grasp quality measures,” Robotica 40(11), 40564075 (2022).CrossRefGoogle Scholar