Hostname: page-component-54dcc4c588-hp6zs Total loading time: 0 Render date: 2025-10-11T06:20:52.807Z Has data issue: false hasContentIssue false

Sedimentology and geochronology of aeolian deposits on the Middle Negro River, northern Amazon, Brazil

Published online by Cambridge University Press:  05 September 2025

Jefferson Jesus de Souza*
Affiliation:
Programa de Pós-Graduação em Geociências, Universidade Federal do Amazonas, Manaus, Brazil
Emílio Alberto Amaral Soares
Affiliation:
Programa de Pós-Graduação em Geociências, Universidade Federal do Amazonas, Manaus, Brazil
Sonia Hatsue Tatumi
Affiliation:
Universidade Federal de São Paulo, Instituto do Mar, Santos, SP, Brazil
Márcio Yee
Affiliation:
Universidade Federal de São Paulo, Instituto do Mar, Santos, SP, Brazil
Rodolfo Dino
Affiliation:
Departamento de Estratigrafia e Paleontologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Luis Antonio Castillo López
Affiliation:
Programa de Pós-Graduação em Geociências, Universidade Federal do Amazonas, Manaus, Brazil
Emanuele Dantas Oliva Grudzin
Affiliation:
Universidade Federal de São Paulo, Instituto do Mar, Santos, SP, Brazil
Luzia Antonioli
Affiliation:
Departamento de Estratigrafia e Paleontologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Mayara Fraeda Barbosa Teixeira
Affiliation:
Programa de Pós-Graduação em Geociências, Universidade Federal do Amazonas, Manaus, Brazil
Raphael Di Carlo Silva dos Santos
Affiliation:
Programa de Pós-Graduação em Geociências, Universidade Federal do Amazonas, Manaus, Brazil
Carlos Alejandro Salazar
Affiliation:
Programa de Pós-Graduação em Geociências, Universidade Federal do Amazonas, Manaus, Brazil
*
Corresponding author: Jefferson Jesus de Souza; Email: jeff_0110@hotmail.com

Abstract

Fields of sandy paleodunes have been identified in Brazil, Colombia, Venezuela, and Guyana north of the South American continent. In this study, geochronological data obtained by optically stimulated luminescence (OSL) for paleodunes in the Middle Rio Negro region (Brazil) allowed the identification of two stages of dune deposition: the older from 169.74 ± 1.01 ka to 124.38 ± 0.91 ka and the younger from 18.89 ± 0.88 ka to 14.75 ± 0.77 ka. The older interval is the first reported in the Amazon; no correlated sediment has been documented. In contrast, the more recent depositional interval correlates to the interval of paleodune fields of the region called “dry corridor” in the Late Pleistocene–Holocene. In this study, we associated the genesis of paleodunes with the reworking of alluvial deposits from the Negro and Demini rivers, driven by river seasonality during the Pleistocene–Holocene, as evidenced by characteristic microtextural data.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Absy, M.L., 1982. Quaternary palynological studies in the Amazon Basin. In: Prance, G.T. (Ed.), Biological Diversification in the Tropics. Columbia University Press, New York, pp. 6773.Google Scholar
Absy, M.L., Cleef, A., Fornier, M., Servant, M., Siédine, A., Da Silva, M.F., Soubies, F., Suguio, K., Turcq, B., van der Hammen, T., 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de l’Amazonie au cours des 60 000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendus Académie des Sciences, Paris 313, 673678.Google Scholar
Absy, M.L., Servant, M., Absy, M.L., 1993. Weather and vegetation history by the study of pollen grains; a historia do clima e da vegetação pelo estudo do polen. Ciência Hoje 16, 2630.Google Scholar
Adamiec, G., Aitken, M., 1998. Dose-rate conversion factors: update. Ancient TL 16, 3750.10.26034/la.atl.1998.292CrossRefGoogle Scholar
Ahlbrandt, T.S., 1979. Textural parameters of eolian deposits. In: McKee, E. (Ed.), A Study of Global Sand Seas. U.S. Geological Survey Paper 1052, 2152.Google Scholar
Arnot, M.J., Good, TR., Lewis, J.J.M., 1997. Photogeological and image analysis techniques for collection of large-scale outcrop data. Journal of Sedimentary Research, Section A. Sedimentary Petrology and Processes 67, 984987.CrossRefGoogle Scholar
Beltran, J., de Toledo, M.B., Palace, M., Dibb, J., Bush, M.B., 2024. Holocene histories of biome stability in northern Amazonian savannas. The Holocene 34, 283296. https://doi.org/10.1177/09596836231211878.CrossRefGoogle Scholar
Belnap, J., Munson, S.M., Field, J.P., 2011. Aeolian and fluvial processes in dryland regions: the need for integrated studies. Ecohydrology 4, 615622.10.1002/eco.258CrossRefGoogle Scholar
Bullard, J.E., Livingstone, I., 2002. Interactions between aeolian and fluvial systems in dry-land environment. Area 34, 816.CrossRefGoogle Scholar
Bush, M.B., Colinvaux, P.A., Wiemann, M.C., Piperno, D.R., Liu, K., 1990. Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quaternary Research 34, 330345.CrossRefGoogle Scholar
Carneiro Filho, A., Zinck, J.A., 1994. Mapping paleo-aeolian sand cover formations in the northern Amazon basin from TM images. ITC Journal 3, 270282.Google Scholar
Carneiro Filho, A., Schwartz, D., Tatumi, S.H., Rosique, T., 2002. Amazonian paleodunes provide evidence for drier climate phases during the Late Pleistocene–Holocene. Quaternary Research 58, 205209. https://doi.org/10.1006/qres.2002.2345.CrossRefGoogle Scholar
Carneiro Filho, A., Tatumi, S.H., Yee, M., 2003. Dunas Fósseis na Amazônia. Ciência Hoje 3, 2429.Google Scholar
Carr, A.S., Armitage, S.J., Berrío, J.-C., Bilbao, B.A., Boom, A., 2016 An optical luminescence chronology for Late Pleistocene aeolian activity in the Colombian and Venezuelan Llanos. Quaternary Research 85, 299312. https://doi.org/10.1016/j.yqres.2015.12.009.CrossRefGoogle Scholar
Chakroun, A., Miskovsky, J.-C., Zaghbib-Turki, D., 2009. Quartz grain surface features in environmental determination of aeolian Quaternary deposits in northeastern Tunisia. Mineralogical Magazine 73, 607614. https://doi.org/10.1180/minmag.2009.073.4.607.CrossRefGoogle Scholar
Colinvaux, P.A., 1996. Quaternary environmental history and forest diversity in the Neotropics. In: Jackson, J.B.C., Budd, A.F., Coates, A.G. (Eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago, pp. 359405.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., 2000. Palaeoecology and climate of the Amazon basin during the last glacial cycle. Journal of Quaternary Science 15, 347356. https://doi.org/10.1002/1099-1417(200005)15:4<347::AID-JQS537>3.0.CO;2-A.3.0.CO;2-A>CrossRefGoogle Scholar
Colinvaux, P.A., De Oliveira, P.E., Bush, M.B., 2000. Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quaternary Science Reviews 19, 141169. https://doi.org/10.1016/S0277-3791(99)00059-1.CrossRefGoogle Scholar
Costa, P.J.M., Andrade, C., Mahaney, W,C., Marques da Silva, F., Freire, P., Freitas, M.C., Janardo, C., Oliveira, M.A., Silva, T., Lopes, V., 2013. Aeolian microtextures in silica spheres in a wind tunnel experiment: comparison with aeolian quartz. Geomorphology 180–181, 120129. https://doi.org/10.1016/j.geomorph.2012.09.011.CrossRefGoogle Scholar
D’Apolito, C., Absy, M.L., Latrubesse, E.M., 2013. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quaternary Science Reviews 76, 140155.CrossRefGoogle Scholar
Da Silva, M., Corrêa, A.C.deB., 2023. Dunas continentais do Brasil como geocronômetros das variações paleoclimáticas: uma revisão do estado da arte do conhecimento [in Portuguese with English abstract]. Finisterra 58, 149169. https://doi.org/10.18055/Finis28868.Google Scholar
Emmerich, K.H., 1988. Relief, Böden und Vegetation in Zentral- und Nordwest-Brasilien unter besonderer Berücksichtigung der känozoischen Landschaftsentwicklung. Frankfurter Geowissenschaftliche Arbeiten, Serie D (Phys. Geographie) 8, 1218.Google Scholar
Forman, S.L., Wu, Z., Wiest, L., Marin, L., Mayhack, C., 2023. Late Quaternary fluvial and aeolian depositional environments for the western Red River, Southern Great Plains, USA. Quaternary Research 115, 324. https://doi.org/10.1017/qua.2023.15.CrossRefGoogle Scholar
Fernandez, G.B., Pereira, T.G., Rocha, T.B., Maluf, V., Moulton, M., de Oliveria Filho, S.R., 2017. Classificação morfológica das dunas costeiras entre o Cabo Frio e o Cabo Búzios, litoral do Estado do Rio de Janeiro [in Portuguese with English abstract]. Revista Brasileira de Geomorfologia 18, 595622. https://doi.org/10.20502/rbg.v18i3.862.CrossRefGoogle Scholar
Figueiredo, T.F., Wankler, F.L., 2012. Análise Sedimentológica da Formação Areias Brancas – Bacia do Tacutu, Roraima; In: 12th Simpósio de Geologia da Amazônia, 02 a 05 de Outubro de 2011, Boa Vista, Roraima, Resumos Expandidos, pp. 298301.Google Scholar
Filizola, N., Guyot, J.L., 2011. Fluxo de sedimentos em suspensão nos rios da Amazônia. Revista Brasileira de Geociências 41, 566576.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology 11, 127. https://doi.org/10.1016/j.quageo.2012.04.020.CrossRefGoogle Scholar
Galbraith, R., Roberts, R.G., Laslett, G., Yoshida, H., Olley, J., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia. Part I: experimental design and statistical models. Archaeometry 41, 339364. https://doi.org/10.1111/j.1475-4754.1999.tb00987.x.CrossRefGoogle Scholar
Giannini, P.C.F., 1993. Sistemas Deposicionais no Quaternário Costeiro entre Jaguaruna e Imbituba, SC. Tese de Doutorado, Programa de Pós-Graduação em Geologia Sedimentar, Instituto de Geociências, Universidade de São Paulo.Google Scholar
Guyot, J.-L., Molinier, M., Guimarães, V., Cudo, K.J., Oliveira, E., 1993. Balanço hídrico da bacia do Rio Negro. Anais do X Simpósio Brasileiro de Recursos Hídricos e I Simpósio de Recursos Hídricos do Cone Sul Balanço Hídrico da Bacia do Rio Negro. CPRM, pp. 535544.Google Scholar
Haffer, J., 1992. Ciclos de tempo e indicadores de tempos na história da Amazônia. Estudos Avançados 6, 739. https://doi.org/10.1590/S0103-40141992000200002.CrossRefGoogle Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., 2001. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 13041308. https://doi.org/10.1126/science.1059725.CrossRefGoogle ScholarPubMed
Irion, G., 1989. Quaternary geological history of the Amazon lowlands. In: Holm-Nielsen, L.B., Nielsen, I.C., Balslev, H. (Eds.), Tropical Forest. New York, London, Academic Press, pp. 2334.CrossRefGoogle Scholar
Klein, D.H., Andren, A.W., Carter, J.A., Emery, J.F., Feldman, C., Fulkerson, W., Lyon, W.S., et al. 1975. Pathways of thirty-seven trace elements through coal-fired power plant. Environmental Science & Technology 9, 973979. https://doi.org/10.1021/es60108a007.CrossRefGoogle Scholar
Kronberg, B.I., Benchimol, R.E., Bird, M.I., 1991. Geochemistry of Acre subbasin sediments: window on ice-age Amazonia. Interciencia 16, 138141.Google Scholar
Latrubesse, E.M., Nelson, B.W., 2001. Evidence for late Quaternary aeolian activity in the Roraima–Guyana region. Catena 43, 6380. https://doi.org/10.1016/S0341-8162(00)00114-4.CrossRefGoogle Scholar
Liu, K., Colinvaux, P.A., 1985. Forest changes in the Amazon Basin during the Last Glacial Maximum. Nature 318, 556557.10.1038/318556a0CrossRefGoogle Scholar
Maezumi, S.Y., Power, M.J., Smith, R.J., McLauchlan, K.K., Brunelle, A.R., Carleton, W.C., Kay, A.U., Roberts, P., Mayle, F.E., 2023. Fire–human–climate interactions in the Bolivian Amazon rainforest ecotone from the Last Glacial Maximum to Late Holocene. Frontiers in Environmental Archaeology 2, 1208985. https://doi.org/10.3389/fearc.2023.1208985.CrossRefGoogle Scholar
Mahaney, W.C., 2002. Atlas of Sand Grain Surface Textures and Applications. Oxford University Press, Oxford.Google Scholar
Mahaney, W.C., Rutter, N.W., 1992. Relative ages of the moraines of the Dalijia Shan, northwestern China. Catena 19, 179191. https://doi.org/10.1016/0341-8162(92)90023-5.CrossRefGoogle Scholar
Mahaney, W.C., Sanmugadas, K., Hancock, R.G.V., 1996. Physical and geochemical analysis of a late glacial/Little Ice Age pedostratigraphic complex in the Zillertal Alps, Austria. Zeitschrift fur Geomorphologie 40, 447460. https://doi.org/10.1127/zfg/40/1996/447.CrossRefGoogle Scholar
Maia, L.P., 1998. Processos Costeros y balance Sedimentario a lo Largo de Fortaleza (Ne-Brasil): implicaciones para una gestion adecuada de La Zona Litoral. Tesis Doctoral, Departament d´Estratigrafica i Paleontologia, Facultat de Geologia, Universitat de Barcelona.Google Scholar
Maia, L.P., Freire, G.S.S., Lacerda, L.D., 2005. Accelerated dune migration and aeolian transport during El Niño events along the NE Brazilian Coast. Journal of Coastal Research 21, 11211126. https://doi.org/10.2112/03-702A.1.CrossRefGoogle Scholar
Margolis, S.V., Krinsley, D.H., 1971. Submicroscopic frosting on eolian and subaqueous quartz sand grains. Geological Society of America Bulletin 82, 33953406. https://doi.org/10.1130/0016-7606(1971)82[3395:SFOEAS]2.0.CO;2.CrossRefGoogle Scholar
Marinho, R.R., Zanin, P.R., Filizola, N.P., 2021. The Negro River in the Anavilhanas Archipelago: streamflow and geomorphology of a complex anabranching system in the Amazon. Earth Surface Processes and Landforms 47, 11081123. https://doi.org/10.1002/esp.5306.CrossRefGoogle Scholar
Mescolotti, P.C., Giannini, P.C.F., do Nascimento Pupim, F., Sawakuchi, A.O., Ladeira, F.S.B., Assine, M.L., 2023. The largest Quaternary inland eolian system in Brazil: eolian landforms and activation/stabilization phases of the Xique–Xique dune field. Geomorphology 420, 108516. https://doi.org/10.1016/j.geomorph.2022.108516.CrossRefGoogle Scholar
Moreira, L.S., Moreira-Turcq, P.F., Cordeiro, R.C., Turcq, B.J., 2009. Paleoenvironmental reconstruction of an Amazon floodplain lake, Lago Santa Ninha, Várzea do Lago Grande de Curuai, Pará, Brasil. Acta Amazonica 39, 609616.10.1590/S0044-59672009000300016CrossRefGoogle Scholar
Nichols, G., 2009. Sedimentology and Stratigraphy. 2nd ed. John Wiley & Sons, Hoboken.Google Scholar
Parolin, M., Stevaux, J.C., 2002. Clima seco e formação de dunas eólicas durante o Holoceno Médio em Taquaruçu, Mato Grosso do Sul [Dry climate and the formation of aeolian dunes during mid-Holocene in Taquaruçu, Mato Grosso do Sul]. Pesquisas em Geociências 28, 233243. https://doi.org/10.22456/1807-9806.20298.CrossRefGoogle Scholar
Peng, J., Dong, Z.B., Han, F.Q., Long, H., Liu, X.J., 2013. R package numOSL: numeric routines for optically stimulated luminescence dating. Ancient TL 31, 4148.10.26034/la.atl.2013.473CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500. https://doi.org/10.1016/1350-4487(94)90086-8.CrossRefGoogle Scholar
Pye, K., Tsoar, H., 2009. Aeolian Sand and Sand Dunes. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
Ríos-Villamizar, E.A., Adeney, J.M., Piedade, M.T.F., Junk, W.J., 2020. Hydrochemical classification of Amazonian rivers: a systematic review and meta-analysis. Caminhos de Geografia 21, 211226. https://doi.org/10.14393/RCG217853272.CrossRefGoogle Scholar
, N.P., Absy, M.L., Soares, E.A.A., 2016. Late Holocene paleoenvironments of the floodplain of Solimões River, Central Amazonia, based on palynological record of Lake Cabaliana. Acta Botanica Brasilica 30, 473485. https://doi.org/10.1590/0102-33062016abb0250.CrossRefGoogle Scholar
Santos, G.M., Gomes, R.M., Anjos, R.M, Cordeiro, R.C., Turcq, B.J, Siffedine, A., Ditada, M.L., Cresswell, R.G., Fifeld, L.K., 1999. Utilização da Técnica de AMS-14C em datação de Fragmentos de Carvão de Solos, do Período do Holoceno, na Floresta Amazônica (Região de Manaus) [in Portuguese]. Revista de Física Aplicada e Instrumentação 14, 111.Google Scholar
Sawakuchi, A.O., Kalchgruber, R., Giannini, P.C.F., Jr Nascimento, D.R., Guedes, C.C.F., Umisedo, N.K., 2008. The development of blowouts and foredunes in the Ilha Comprida barrier (Southeastern Brazil): the influence of Late Holocene climate changes on coastal sedimentation. Quaternary Science Reviews 27, 20762090. https://doi.org/10.1016/j.quascirev.2008.08.020.CrossRefGoogle Scholar
Schneider, T., Bischoff, T., Haug, G.H., 2014. Migrations and dynamics of the intertropical convergence. Nature 513, 4552.10.1038/nature13636CrossRefGoogle ScholarPubMed
Sifeddine, A., Fröhlich, F., Fournier, M., Martin, L., Servant, M., Soubiès, F., Turcq, B., Suguio, K., Volkmer-Ribeiro, C., 1994. La sédimentation lacustre indicateur de changements des paléoenvironnements au cours des 30 000 dernières années (Carajás, Amazonie, Brésil). Comptes Rendus de l’Académie des Sciences 318 (2), 16451652.Google Scholar
Sifeddine, A., Martin, L., Turcq, B., Volkmer-Ribeiro, C., Soubiès, F., Cordeiro, R.C., Suguio, K., 2001. Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 168, 221235. https://doi.org/10.1016/S0031-0182(00)00256-X.CrossRefGoogle Scholar
Silva, E.A.J., 2002. As dunas eólicas de Nalta/RN: datação e evolução. Dissertação, Programa de Pós-Graduação em Geodinâmica e Geofísica, Centro de Ciências da Terra, Universidade Federal de Natal.Google Scholar
Soares, E.A.A., 2007. Depósitos pleistocênicos da região de confluência dos rios Negro e Solimões, Amazonas. Tese de doutorado, Universidade de São Paulo, São Paulo, pp. 250Google Scholar
Suguio, K., 1999. Geologia do Quaternário e Mudanças Ambientais. São Paulo, Paulo’s Comunicação e Artes Gráficas, p. 366Google Scholar
Teeuw, R.M., Rhodes, E.J., 2004. Aeolian activity in northern Amazonia: optical dating of Late Pleistocene and Holocene paleodunes. Journal of Quaternary Science 19, 4954. https://doi.org/10.1002/jqs.815.CrossRefGoogle Scholar
Tripaldi, A., Zárate, M.A., 2016. A review of late Quaternary inland dune systems of South America east of the Andes. Quaternary International 410, 96110. https://doi.org/10.1016/j.quaint.2014.06.069.CrossRefGoogle Scholar
Tripaldi, A., Zárate, M.A., Brook, G.A., Li, G.-Q., 2011. Late Quaternary paleoenvironments and paleoclimatic conditions in the distal Andean piedmont, southern Mendoza, Argentina. Quaternary Research 76, 253263. https://doi.org/10.1016/j.yqres.2011.06.008.CrossRefGoogle Scholar
Turcq, B., Braconnot, P., Cordeiro, R.C., Sifedinne, A., Silva Dias, P.L., Abrão, J.J., Jorgetti, T., Lima Da Costa, R., Simões Filho, F.F., 2007. Mudanças paleoclimáticas da Amazônia no Holoceno. Ciência e Ambiente 34, 6996.Google Scholar
Uvo, R.C.B., 1989. A zona de convergência intertropical (ZCIT) e sua relação com a precipitação na região Norte do Nordeste Brasileiro. Programa de Pós-Graduação do INPE em Meteorologia. Instituto Nacional de Pesquisas Espaciais (INPE).Google Scholar
Wintle, A.G. Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369391. https://doi.org/10.1016/j.radmeas.2005.11.001.CrossRefGoogle Scholar
Yuan, T., Xu, H., Liu, G., Zhang, B., Zheng, H., 2024. Eocene dry eolian system in the Jianchuan Basin, southeastern Tibetan Plateau: implications for regional wind regime and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 635, 111949. https://doi.org/10.1016/j.palaeo.2023.111949.CrossRefGoogle Scholar
Zular, A., Sawakuchi, A.O., Chiess, C.M., d’Horta, F.M., Demattê, J.A.M., Ribas, C.C., Hartmann, G.A., Giannini, P.C.F., Soares, E.A.A., 2019. The role of abrupt climate change in the formation of an open vegetation enclave in northern Amazonian during the late Quaternary. Global and Planetary Change 172, 140149. https://doi.org/10.1016/j.gloplacha.2018.09.006.CrossRefGoogle Scholar