Hostname: page-component-6bb9c88b65-kfd97 Total loading time: 0 Render date: 2025-07-25T19:26:38.109Z Has data issue: false hasContentIssue false

Multifaceted analysis reveals diet and kinship of Late Pleistocene ‘Tumat Puppies’

Published online by Cambridge University Press:  12 June 2025

Anne Kathrine Wiborg Runge
Affiliation:
Department of Archaeology, University of York, YO10 5NG York, UK GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
Jonas Niemann
Affiliation:
Department of Archaeology, University of York, YO10 5NG York, UK GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
Mietje Germonpré
Affiliation:
Royal Belgian Institute of Natural Sciences, 1000 Brussel, Belgium
Dorothée G. Drucker
Affiliation:
Senckenberg Centre for Human Evolution and Palaeoenvironment (S-HEP), University of Tubingen, 72074 Tübingen, Germany
Hervé Bocherens
Affiliation:
Senckenberg Centre for Human Evolution and Palaeoenvironment (S-HEP), University of Tubingen, 72074 Tübingen, Germany Department of Geosciences, Biogeology, University of Tübingen, 72076 Tübingen, Germany
Kseniia Boxleitner
Affiliation:
Max Planck Institute of Geoanthropology, 07745 Jena, Germany
Jazmín Ramos-Madrigal
Affiliation:
GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark Centre for Evolutionary Hologenomics, University of Copenhagen, 1353 Copenhagen, Denmark
Anna Linderholm
Affiliation:
Centre for Palaeogenetics, Stockholm University, 106 91 Stockholm, Sweden Department of Geological Sciences, Stockholm University, 114 18 Stockholm, Sweden
David W.G. Stanton
Affiliation:
Centre for Palaeogenetics, Stockholm University, 106 91 Stockholm, Sweden Department of Geological Sciences, Stockholm University, 114 18 Stockholm, Sweden Cardiff School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS London, UK Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
Alexandr Kandyba
Affiliation:
Institute of Archaeology and Ethnography SB RAS, Novosibirsk, 630090, Russia
Jonathan Brecko
Affiliation:
Royal Belgian Institute of Natural Sciences, 1000 Brussel, Belgium Royal Museum for Central Africa, B-3080 Tervuren, Belgium
Martine Van den Broeck
Affiliation:
Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
Robert Losey
Affiliation:
Department of Anthropology, University of Alberta, Edmonton, AB T6G 2H4, Canada
Jannikke Räikkönen
Affiliation:
Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden Department of Environmental Monitoring and Research, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
Mikhail Sablin
Affiliation:
Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
Julia Stagegaard
Affiliation:
Ree Park Safari, 8400 Ebeltoft, Denmark
Shyam Gopalakrishnan
Affiliation:
GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark Centre for Evolutionary Hologenomics, University of Copenhagen, 1353 Copenhagen, Denmark
Sergey Fedorov
Affiliation:
Mammoth Museum of North-Eastern Federal University, 677000 Yakutsk, Russia
Mikkel-Holger S. Sinding
Affiliation:
Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
M. Thomas P. Gilbert
Affiliation:
GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark Centre for Evolutionary Hologenomics, University of Copenhagen, 1353 Copenhagen, Denmark NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Nathan Wales*
Affiliation:
Department of Archaeology, University of York, YO10 5NG York, UK
*
Corresponding author: Nathan Wales; Email: nathan.wales@york.ac.uk

Abstract

Distinguishing early domesticates from their wild progenitors presents a significant obstacle for understanding human-mediated effects in the past. The origin of dogs is particularly controversial because potential early dog remains often lack corroborating evidence that can provide secure links between proposed dog remains and human activity. The Tumat Puppies, two permafrost-preserved Late Pleistocene canids, have been hypothesized to have been littermates and early domesticates due to a physical association with putatively butchered mammoth bones. Through a combination of osteometry, stable isotope analysis, plant macrofossil analysis, and genomic and metagenomic analyses, this study exploits the unique properties of the naturally mummified Tumat Puppies to examine their familial relationship and to determine whether dietary information links them to human activities. The multifaceted analysis reveals that the 14,965–14,046 cal yr BP Tumat Puppies were littermates who inhabited a dry and relatively mild environment with heterogeneous vegetation and consumed a diverse diet, including woolly rhinoceros in their final days. However, because there is no evidence of mammoth consumption, these data do not establish a link between the canids and ancient humans.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allentoft, M.E., Sikora, M., Sjögren, K.-G., Rasmussen, S., Rasmussen, M., Stenderup, J., Damgaard, P.B., et al., 2015. Population genomics of Bronze Age Eurasia. Nature 522, 167172.10.1038/nature14507CrossRefGoogle ScholarPubMed
Ambrose, S.H., 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17, 431451.10.1016/0305-4403(90)90007-RCrossRefGoogle Scholar
Anderberg, A.-L., 1994. Resedaceae–Umbelliferae. Atlas of Seeds and Small Fruits of Northwest-European Plant Species with Morphological Descriptions, 4. Swedish Museum of Natural History, Stockholm, Stockholm.Google Scholar
Andrews, S., 2010. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom.Google Scholar
Arnall, L., 1960. Some aspects of dental development in the dog-II. Eruption and extrusion. Journal of Small Animal Practice 1, 259267.10.1111/j.1748-5827.1960.tb06100.xCrossRefGoogle Scholar
Arppe, L., Karhu, J.A., Vartanyan, S., Drucker, D.G., Etu-Sihvola, H., Bocherens, H., 2019. Thriving or surviving? The isotopic record of the Wrangel Island woolly mammoth population. Quaternary Science Reviews 222, 105884. https://doi.org/10.1016/j.quascirev.2019.105884.CrossRefGoogle Scholar
Benecke, N., 1987. Studies on early dog remains from Northern Europe. Journal of Archaeological Science 14, 3149.10.1016/S0305-4403(87)80004-3CrossRefGoogle Scholar
Berggren, G., 1969. Cyperaceae. Atlas of Seeds and Small Fruits of Northwest- European Plant Species with Morphological Descriptions, 2. Swedish Natural Science Research Council, Stockholm, Stockholm.Google Scholar
Berggren, G., 1981. Salicaceaee, Cruciferae. Atlas of Seeds and Small Fruits of Northwest-European Plant Species with Morphological Descriptions, 3. Swedish Museum of Natural History, Stockholm, Stockholm.Google Scholar
Bergström, A., Stanton, D.W.G., Taron, U.H., Frantz, L., Sinding, M.-H.S., Ersmark, E., Pfrengle, S., et al., 2022. Grey wolf genomic history reveals a dual ancestry of dogs. Nature 607, 313320.10.1038/s41586-022-04824-9CrossRefGoogle ScholarPubMed
Bjone, S.J., Brown, W.Y., Price, I.R., 2007. Grass eating patterns in the domestic dog, Canis familiaris. Recent Advances in Animal Nutrition in Australia 16, 4549.Google Scholar
Bocherens, H., 2015. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quaternary Science Reviews 117, 4271.10.1016/j.quascirev.2015.03.018CrossRefGoogle Scholar
Bronk Ramsey, C., 2021. OxCal v.4.4.4. [software] https://c14.arch.ox.ac.uk/oxcal.htmlGoogle Scholar
Botigué, L.R., Song, S., Scheu, A., Gopalan, S., Pendleton, A.L., Oetjens, M., Taravella, A.M., et al., 2017. Ancient European dog genomes reveal continuity since the Early Neolithic. Nature Communications 8, 16082. https://doi.org/10.1038/ncomms16082.CrossRefGoogle ScholarPubMed
Broad Institute, 2019. Picard Toolkit GitHub Repository. http://broadinstitute.github.io/picard/.Google Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.10.1017/S0033822200033865CrossRefGoogle Scholar
Brumm, A., Germonpré, M., Koungoulos, L., 2023. The human-initiated model of wolf domestication – an expansion based on human-dingo relations in Aboriginal Australia. Frontiers in Psychology 14, 1082338. https://doi.org/10.3389/fpsyg.2023.1082338.CrossRefGoogle ScholarPubMed
Carøe, C., Gopalakrishnan, S., Vinner, L., Mak, S.S.T., Sinding, M.H.S., Samaniego, J.A., Wales, N., Sicheritz‐Pontén, T., Gilbert, M.T.P., 2018. Single‐tube library preparation for degraded DNA. Methods in Ecology and Evolution 9, 410419.10.1111/2041-210X.12871CrossRefGoogle Scholar
Caut, S., Angulo, E., Courchamp, F., 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. The Journal of Applied Ecology 46, 443453.10.1111/j.1365-2664.2009.01620.xCrossRefGoogle Scholar
Chernova, O.F., Protopopov, A.V., Perfilova, T.V., Kirillova, I.V., Boeskorov, G.G., 2016. Hair microstructure of the first time found calf of woolly rhinoceros Coelodonta antiquitatis. Doklady Biological Sciences 471, 291295.10.1134/S0012496616060090CrossRefGoogle ScholarPubMed
Coppinger, R., Coppinger, L., 2001. Dogs: A New Understanding of Canine Origin, Behavior, and Evolution. University of Chicago Press, Chicago.Google Scholar
Crossley, D.A., 1995. Tooth enamel thickness in the mature dentition of domestic dogs and cats—preliminary study. Journal of Veterinary Dentistry 12, 111113.10.1177/089875649501200302CrossRefGoogle ScholarPubMed
Dabney, J., Knapp, M., Glocke, I., Gansauge, M.-T., Weihmann, A., Nickel, B., Valdiosera, C., et al., 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America 110, 1575815763.10.1073/pnas.1314445110CrossRefGoogle ScholarPubMed
DeNiro, M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806809.10.1038/317806a0CrossRefGoogle Scholar
Drake, A.G., Coquerelle, M., Colombeau, G., 2015. 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic. Scientific Reports 5, 8299. https://doi.org/10.1038/srep08299.CrossRefGoogle ScholarPubMed
Esaka, S., 1982. Development of rotation of mandibular premolar tooth germs in the dog. Acta Anatomica 114, 211227.10.1159/000145592CrossRefGoogle ScholarPubMed
Fedorov, S., Garmaeva, D., Luginov, N., Grigoriev, S., Savvinov, G., Vasilev, S., Kirikov, K., Allentoft, M., Tikhonov, A., 2014. Tomographic study and 3D-reconstruction of mummified Pleistocene dog from north-eastern Siberia. In: Kostopoulos, D.S., Vlachos, E., Tsoukala, E. (Eds.), Abstract Book of the 6th International Conference on Mammoths and their Relatives, 5–12 May 2014, Greevena–Siatista. Scientific Annals of the School of Geology, Aristotle University of Thessaloniki 102, 53.Google Scholar
Fox-Dobbs, K., Bump, J.K., Peterson, R.O., Fox, D.L., Koch, P.L., 2007. Carnivore-specific stable isotope variables and variation in the foraging ecology of modern and ancient wolf populations: case studies from Isle Royale, Minnesota, and La Brea. Canadian Journal of Zoology 85, 458471.10.1139/Z07-018CrossRefGoogle Scholar
Frantz, L.A.F., Mullin, V.E., Pionnier-Capitan, M., Lebrasseur, O., Ollivier, M., Perri, A., Linderholm, A., et al., 2016. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 12281231.10.1126/science.aaf3161CrossRefGoogle ScholarPubMed
Germonpré, M., Sablin, M.V., Stevens, R.E., Hedges, R.E.M., Hofreiter, M., Stiller, M., Després, V.R., 2009. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. Journal of Archaeological Science 36, 473490.10.1016/j.jas.2008.09.033CrossRefGoogle Scholar
Gopalakrishnan, S., Samaniego Castruita, J.A., Sinding, M.-H.S., Kuderna, L.F.K., Räikkönen, J., Petersen, B., Sicheritz-Ponten, T., et al., 2017. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics. BMC Genomics 18, 495. https://doi.org/10.1186/s12864-017-3883-3.CrossRefGoogle ScholarPubMed
Germonpré, M., Lázničková-Galetová, M., Sablin, M.V., Bocherens, H., 2018. Self-domestication or human control? The Upper Palaeolithic domestication of the wolf. In: Stépanoff, C., Vigne, J.-D. (Eds.), Hybrid Communities. Biosocial Approaches to Domestication and Other Trans-species Relationships. Routledge, Oxfordshire, pp. 3964.10.4324/9781315179988-3CrossRefGoogle Scholar
Germonpré, M., Van den Broeck, M., Lázničková-Galetová, M., Sablin, M.V., Bocherens, H., 2021. Mothering the orphaned pup: the beginning of a domestication process in the Upper Palaeolithic. Human Ecology 49, 677689.10.1007/s10745-021-00234-zCrossRefGoogle Scholar
Grimm, R., 2021. How modern mass spectrometry can solve ancient questions: a multi-omics study of the stomach content of the oldest human ice mummy, the 5300-year-old Iceman or Oetzi. Methods in Molecular Biology 2261. https://doi.org/10.1007/978-1-0716-1186-9_1.Google ScholarPubMed
Hanghøj, K., Moltke, I., Andersen, P.A., Manica, A., Korneliussen, T.S., 2019. Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding. Gigascience 8, giz034. https://doi.org/10.1093/gigascience/giz034.CrossRefGoogle ScholarPubMed
Heptner, V.G., Naumov, N.P., Yurgenson, P.B., Sludskii, A.A., Chirkova, A.F., Bannikov, A.G., 1998. Mammals of the Soviet Union. Volume II. Part la, Sirenia and Carnivora.: Smithsonian Institution Libraries and National Science Foundation, Washington, DC.Google Scholar
Hilbig, W., 1995. The Vegetation of Mongolia. SPB Academic Publishing, The Hague, Netherlands.Google Scholar
Hobson, K.A., Clark, R.G., 1992. assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor 94, 189197.10.2307/1368808CrossRefGoogle Scholar
Homkes, A.T., Gable, T.D., Windels, S.K., Bump, J.K., 2020. Berry important? Wolf provisions pups with berries in northern Minnesota. Wildlife Society Bulletin 44, 221223.10.1002/wsb.1065CrossRefGoogle Scholar
Huson, D.H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.-J., Tappu, R., 2016. MEGAN Community Edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Computational Biology 12, e1004957. https://doi.org/10.1371/journal.pcbi.1004957.CrossRefGoogle ScholarPubMed
Janssens, L., Giemsch, L., Schmitz, R., Street, M., Van Dongen, S., Crombé, P., 2018. A new look at an old dog: Bonn–Oberkassel reconsidered. Journal of Archaeological Science 92, 126138.10.1016/j.jas.2018.01.004CrossRefGoogle Scholar
Jenkins, S.G., Partridge, S.T., Stephenson, T.R., Farley, S.D., Robbins, C.T., 2001. Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia 129, 336341.10.1007/s004420100755CrossRefGoogle ScholarPubMed
Jensen, T.Z.T., Niemann, J., Iversen, K.H., Fotakis, A.K., Gopalakrishnan, S., Vågene, Å.J., Pedersen, M.W., et al., 2019. A 5700 year-old human genome and oral microbiome from chewed birch pitch. Nature Communications 10, 5520. https://doi.org/10.1038/s41467-019-13549-9.CrossRefGoogle ScholarPubMed
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P.L.F., Orlando, L., 2013. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 16821684.10.1093/bioinformatics/btt193CrossRefGoogle ScholarPubMed
Kandyba, A.V., Fedorov, S.E., Dmitriev, A.I., Protodiakonov, K.I., 2015. A new late Neo-Pleistocene archaeological object Syalakh site in the Russian Arctic region. [In Russian] Problems of Archaeology, Ethnography, Anthropology of Siberia and Neighboring Territories 21, 9093.Google Scholar
Katz, N.Y., Katz, S.V., Kipiani, M.G., 1965. Atlas and Keys of Fruits and Seeds Occurring in the Quaternary Deposits of The USSR. Academy of Sciences of the USSR, Izd-vo Nauka, Moscow.Google Scholar
Kennedy, A.J., 1982. Distinguishing characteristics of the hairs of wild and domestic canids from Alberta. Canadian Journal of Zoology 60, 536541.10.1139/z82-080CrossRefGoogle Scholar
Key, F.M., Posth, C., Krause, J., Herbig, A., Bos, K.I., 2017. Mining metagenomic data sets for ancient DNA: recommended protocols for authentication. Trends in Genetics 33, 508520.10.1016/j.tig.2017.05.005CrossRefGoogle ScholarPubMed
Kienast, F., Schirrmeister, L., Siegert, C., Tarasov, P., 2005. Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quaternary Research 63, 283300.10.1016/j.yqres.2005.01.003CrossRefGoogle Scholar
Kienast, F., Tarasov, P., Schirrmeister, L., Grosse, G., Andreev, A.A., 2008. Continental climate in the East Siberian Arctic during the last interglacial: implications from palaeobotanical records. Global and Planetary Change 60, 535562.10.1016/j.gloplacha.2007.07.004CrossRefGoogle Scholar
Kienast, F., Wetterich, S., Kuzmina, S., Schirrmeister, L., Andreev, A.A., Tarasov, P., Nazarova, L., Kossler, A., Frolova, L., Kunitsky, V.V., 2011. Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day Arctic coast in western Beringia during the Last Interglacial. Quaternary Science Reviews 30, 21342159.10.1016/j.quascirev.2010.11.024CrossRefGoogle Scholar
Kircher, M., Sawyer, S., Meyer, M., 2012. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Research 40, e3. https://doi.org/10.1093/nar/gkr771.CrossRefGoogle ScholarPubMed
Kirillova, I.V., Tiunov, A.V., Levchenko, V.A., Chernova, O.F., Yudin, V.G., Bertuch, F., Shidlovskiy, F.K., 2015. On the discovery of a cave lion from the Malyi Anyui River (Chukotka, Russia). Quaternary Science Reviews 117, 135151.10.1016/j.quascirev.2015.03.029CrossRefGoogle Scholar
Kowalczyk, M., Staniszewski, A., Kamiñska, K., Domaradzki, P., Horecka, B., 2021. Advantages, possibilities, and limitations of mitochondrial DNA analysis in molecular identification. Folia Biologica 69, 101111.Google Scholar
Kuitems, M., Van Kolfschoten, T., van der Plicht, J., 2015. Elevated δ15N values in mammoths: a comparison with modern elephants. Archaeological and Anthropological Sciences 7, 289295. https://doi.org/10.1007/s12520-012-0095-2.CrossRefGoogle Scholar
Lamb, A.L., 2016. Stable isotope analysis of soft tissues from mummified human remains. Environmental Archaeology 21, 271284. https://doi.org/10.1080/14614103.2015.1101937.CrossRefGoogle Scholar
Larson, G., Fuller, D.Q., 2014. The evolution of animal domestication. Annual Review of Ecology, Evolution, and Systematics 45, 115136.10.1146/annurev-ecolsys-110512-135813CrossRefGoogle Scholar
Lee, H.-S., Shim, J.-Y., Shin, W.-J., Choi, S.-H., Bong, Y.-S., Lee, K.-S., 2021. Dietary homogenization and spatial distributions of carbon, nitrogen, and sulfur isotope ratios in human hair in South Korea. PLoS One 16, e0256404. https://doi.org/10.1371/journal.pone.0256404.CrossRefGoogle Scholar
Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 17541760.10.1093/bioinformatics/btp324CrossRefGoogle ScholarPubMed
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 1000 Genome Project Data Processing Subgroup, 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 20782079.10.1093/bioinformatics/btp352CrossRefGoogle Scholar
Linglin, M., Amiot, R., Richardin, P., Porcier, S., 2020. Isotopic systematics point to wild origin of mummified birds in Ancient Egypt. Scientific Reports 10, 15463. https://doi.org/10.1038/s41598-020-72326-7.CrossRefGoogle ScholarPubMed
Lord, E., Dussex, N., Kierczak, M., Díez-Del-Molino, D., Ryder, O.A., Stanton, D.W.G., Gilbert, M.T.P., et al., 2020. Pre-extinction demographic stability and genomic signatures of adaptation in the Woolly Rhinoceros. Current Biology 30, .10.1016/j.cub.2020.07.046CrossRefGoogle ScholarPubMed
Losey, R.J., Wishart, R.P., Loovers, J.P.L., 2018. Dogs in the North: Stories of Cooperation and Co-Domestication. Routledge, Abingdon-on-Thames, UK.10.4324/9781315437736CrossRefGoogle Scholar
Mak, S.S.T., Gopalakrishnan, S., Carøe, C., Geng, C., Liu, S., Sinding, M.-H.S., Kuderna, L.F.K., et al., 2017. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. Gigascience 6, gix049. https://doi.org/10.1093/gigascience/gix049.CrossRefGoogle ScholarPubMed
Mann, A.E., Fellows Yates, J.A., Fagernäs, Z., Austin, R.M., Nelson, E.A., Hofman, C.A., 2023. Do I have something in my teeth? The trouble with genetic analyses of diet from archaeological dental calculus. Quaternary International 653–654, 3346.10.1016/j.quaint.2020.11.019CrossRefGoogle Scholar
Marsh, W.A., Brace, S., Barnes, I., 2023. Inferring biological kinship in ancient datasets: comparing the response of ancient DNA-specific software packages to low coverage data. BMC Genomics 24, 111. https://doi.org/10.1186/s12864-023-09198-4.CrossRefGoogle ScholarPubMed
Meachen, J., Wooller, M.J., Barst, B.D., Funck, J., Crann, C., Heath, J., Cassatt-Johnstone, M., et al., 2020. A mummified Pleistocene gray wolf pup. Current Biology 30, R1467R1468.10.1016/j.cub.2020.11.011CrossRefGoogle ScholarPubMed
Mech, L.D., 1999. Alpha status, dominance, and division of labor in wolf packs. Canadian Journal of Zoology 77, 11961203. https://doi.org/10.1139/z99-099.CrossRefGoogle Scholar
Mech, L.D., 1970. The Wolf: The Ecology and Behavior of an Endangered Species. Natural History Press, New York.Google Scholar
Mech, L.D., 2022. Newly documented behavior of free-ranging Arctic Wolf pups. Arctic 75, 272276.10.14430/arctic75056CrossRefGoogle Scholar
Mech, L.D., Janssens, L.A.A., 2022. An assessment of current wolf Canis lupus domestication hypotheses based on wolf ecology and behaviour. Mammal Review 52, 304314.10.1111/mam.12273CrossRefGoogle Scholar
Meyer, M., Kircher, M., 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols 2010, db.prot5448. https://doi.org/10.1101/pdb.prot5448.CrossRefGoogle Scholar
Monroy Kuhn, J.M., Jakobsson, M., Günther, T., 2018. Estimating genetic kin relationships in prehistoric populations. PLoS One 13, e0195491. https://doi.org/10.1371/journal.pone.0195491.CrossRefGoogle ScholarPubMed
Morey, D., 2010. Dogs: Domestication and the Development of a Social Bond. Cambridge University Press, Cambridge, UK.10.1017/CBO9780511778360CrossRefGoogle Scholar
Morey, D.F., Jeger, R., 2015. Paleolithic dogs: why sustained domestication then? Journal of Archaeological Science: Reports 3, 420428.Google Scholar
Müller, W., 2005. The domestication of the wolf – the inevitable first? In: Vigne, J.-D., Peters, J., Helmer, D. (Eds.), The First Steps of Animal Domestication, Proceedings of the 9th ICAZ Conference, Durham. Oxbow Books, Oxford, pp. 3440.Google Scholar
Nehlich, O., Richards, M.P., 2009. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeological and Anthropological Sciences 1, 5975.10.1007/s12520-009-0003-6CrossRefGoogle Scholar
Object Research Systems (ORS) Inc., 2018. Dragonfly 3.5. https://dev.theobjects.com/dragonfly_3_5_release/contents.html.Google Scholar
OpenStreetMap contributors, 2017. OpenStreetMap. https://www.openstreetmap.org.Google Scholar
Packard, J.M., 2003. Wolf behaviour: reproductive, social and intelligent. In: Mech, L.D., Boitani, L. (Eds.), Wolves: Behavior, Ecology, and Conservation. University of Chicago Press, Chicago, pp. 3565.Google Scholar
Packard, J.M., 2019. Wolves. In: Choe, J.C. (Ed.), Encyclopedia of Animal Behavior, Second Edition. Academic Press, Oxford, pp. 262278.10.1016/B978-0-12-809633-8.90078-5CrossRefGoogle Scholar
Packard, J.M., Mech, L.D., Ream, R.R., 1992. Weaning in an arctic wolf pack: behavioral mechanisms. Canadian Journal of Zoology 70, 12691275.10.1139/z92-177CrossRefGoogle Scholar
Perri, A.R., 2016. A wolf in dog’s clothing: initial dog domestication and Pleistocene wolf variation. Journal of Archaeological Science 68, 14.10.1016/j.jas.2016.02.003CrossRefGoogle Scholar
QGIS Development Team, 2023. QGIS Geographic Information System. QGIS Association. https://qgis.org.Google Scholar
Quinlan, A.R., 2014. BEDTools: the Swiss-Army tool for genome feature analysis. Current Protocols in Bioinformatics 47, .10.1002/0471250953.bi1112s47CrossRefGoogle ScholarPubMed
Ramos-Madrigal, J., Sinding, M.-H.S., Carøe, C., Mak, S.S.T., Niemann, J., Samaniego Castruita, J.A., Fedorov, S., et al., 2021. Genomes of Pleistocene Siberian wolves uncover multiple extinct wolf lineages. Current Biology 31, 198206.10.1016/j.cub.2020.10.002CrossRefGoogle ScholarPubMed
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., et al., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62, 725757. https://doi.org/10.1017/RDC.2020.41.CrossRefGoogle Scholar
Reinecke, J., Troeva, E., 2017. Extrazonal steppes and other temperate grasslands of northern Siberia—phytosociological classification and ecological characterization. Phytocoenologia 47, 167196.10.1127/phyto/2017/0175CrossRefGoogle Scholar
Richards, M.P., Fuller, B.T., Sponheimer, M., Robinson, T., Ayliffe, L., 2003. Sulphur isotopes in palaeodietary studies: a review and results from a controlled feeding experiment. International Journal of Osteoarchaeology 13, 3745.10.1002/oa.654CrossRefGoogle Scholar
Rohland, N., Glocke, I., Aximu-Petri, A., Meyer, M., 2018. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nature Protocols 13, 24472461.10.1038/s41596-018-0050-5CrossRefGoogle ScholarPubMed
Ryzhanovskiy, V.N., 2018. Annual cycles of wagtails (Passeriformes, Motacillidae) in northwestern Siberia: comparative aspects. Biology Bulletin 45, 10551066.10.1134/S1062359018090157CrossRefGoogle Scholar
Santiago-Rodriguez, T.M., Fornaciari, G., Luciani, S., Dowd, S.E., Toranzos, G.A., Marota, I., Cano, R.J., 2015. Gut microbiome of an 11th century A.D. Pre-Columbian Andean mummy. PLoS One 10, e0138135. https://doi.org/10.1371/journal.pone.0138135.CrossRefGoogle Scholar
Schmieder, R., Edwards, R., 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863864.10.1093/bioinformatics/btr026CrossRefGoogle ScholarPubMed
Schubert, M., Ginolhac, A., Lindgreen, S., Thompson, J.F., Al-Rasheid, K.A.S., Willerslev, E., Krogh, A., Orlando, L., 2012. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics 13, 178. https://doi.org/10.1186/1471-2164-13-178.CrossRefGoogle ScholarPubMed
Schubert, M., Lindgreen, S., Orlando, L., 2016. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Research Notes 9, 88. https://doi.org/10.1186/s13104-016-1900-2.CrossRefGoogle ScholarPubMed
Serpell, J., 1989. Pet-keeping and animal domestication: a reappraisal. In: Clutton-Brock, J. (Ed.), The Walking Larder: Patterns of Domestication, Pastoralism, and Predation. Unwin Hyman, London, pp. 1021.Google Scholar
Serpell, J.A., 2021. Commensalism or cross-species adoption? A critical review of theories of wolf domestication. Frontiers in Veterinary Science 8, 662370. https://doi.org/10.3389/fvets.2021.662370.CrossRefGoogle ScholarPubMed
Shabestari, L., Taylor, G.N., Angus, W., 1967. Dental eruption pattern of the Beagle. Journal of Dental Research 46, 276278.10.1177/00220345670460012601CrossRefGoogle ScholarPubMed
Sher, A.V., Kuzmina, S.A., Kuznetsova, T.V., Sulerzhitsky, L.D., 2005. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quaternary Science Reviews 24, 533569.10.1016/j.quascirev.2004.09.007CrossRefGoogle Scholar
Sikora, M., Pitulko, V.V., Sousa, V.C., Allentoft, M.E., Vinner, L., Rasmussen, S., Margaryan, A., et al., 2019. The population history of northeastern Siberia since the Pleistocene. Nature 570, 182188.10.1038/s41586-019-1279-zCrossRefGoogle ScholarPubMed
Stahler, D.R., MacNulty, D.R., Wayne, R.K., vonHoldt, B., Smith, D.W., 2013. The adaptive value of morphological, behavioural and life-history traits in reproductive female wolves. The Journal of Animal Ecology 82, 222234.10.1111/j.1365-2656.2012.02039.xCrossRefGoogle ScholarPubMed
Symes, C.T., Woodborne, S.M., 2010. Trophic level delineation and resource partitioning in a South African afromontane forest bird community using carbon and nitrogen stable isotopes. African Journal of Ecology 48, 984993. https://doi.org/10.1111/j.1365-2028.2009.01201.x.CrossRefGoogle Scholar
Szpak, P., Valenzuela, D., 2020. Camelid husbandry in the Atacama Desert? A stable isotope study of camelid bone collagen and textiles from the Lluta and Camarones valleys, northern Chile. PLoS One 15, e0228332. https://doi.org/10.1371/journal.pone.0228332.CrossRefGoogle Scholar
Tallian, A., Ciucci, P., Milleret, C., Smith, D., Stahler, D., Wikenros, C., Ordiz, A., 2023. Wolves in a human world: social dynamics of the Northern Hemisphere’s most iconic social carnivore. In: Srinivasan, M., Würsig, B. (Eds.), Social Strategies of Carnivorous Mammalian Predators: Hunting and Surviving as Families. Springer International Publishing, Cham, Switzerland, pp. 89138.10.1007/978-3-031-29803-5_4CrossRefGoogle Scholar
Tanz, N., Schmidt, H.-L., 2010. δ34S-value measurements in food origin assignments and sulfur isotope fractionations in plants and animals. Journal of Agricultural and Food Chemistry 58, 31393146.10.1021/jf903251kCrossRefGoogle Scholar
Thalmann, O., Perri, A.R., 2019. Paleogenomic inferences of dog domestication. In: Lindqvist, C., Rajora, O.P. (Eds.), Paleogenomics: Genome-Scale Analysis of Ancient DNA, Population Genomics. Springer International Publishing, Cham, Switzerland, pp. 273306.Google Scholar
Tims, H.W.M., 1896. On the tooth-genesis in the Canidæ. Zoological Journal of the Linnean Society 25, 445480.10.1111/j.1096-3642.1896.tb00394.xCrossRefGoogle Scholar
Touzeau, A., Amiot, R., Blichert-Toft, J., Flandrois, J.-P., Fourel, F., Grossi, V., Martineau, F., Richardin, P., Lécuyer, C., 2014. Diet of ancient Egyptians inferred from stable isotope systematics. Journal of Archaeological Science 46, 114124.10.1016/j.jas.2014.03.005CrossRefGoogle Scholar
Vågene, Å.J., Herbig, A., Campana, M.G., Robles García, N.M., Warinner, C., Sabin, S., Spyrou, M.A., et al., 2018. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nature Ecology & Evolution 2, 520528.10.1038/s41559-017-0446-6CrossRefGoogle Scholar
Van den Broeck, M., 2022. Age estimation in puppies and young adult dogs: data driven protocol design for the prevention and detection of age fraud in puppy trade. [PhD dissertation] Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.Google Scholar
Van den Broeck, M., De Bels, L., Duchateau, L., Cornillie, P., 2022. Time and sequence of emergence of the deciduous dentition in dogs and its applicability for age estimation. Anatomia, Histologia, Embryologia 51, 640657.10.1111/ahe.12838CrossRefGoogle ScholarPubMed
Vydrina, S., Kurbatskiy, V., Polozhiy, A., 1988. Flora Sibiri. Rosaceae vol. 2. [In Russian] Nauka, Novosibirsk.Google Scholar
Walter, K.M., Edwards, M.E., Grosse, G., Zimov, S.A., Chapin, F.S., III, 2007. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318, 633636.10.1126/science.1142924CrossRefGoogle ScholarPubMed
Waples, R.K., Albrechtsen, A., Moltke, I., 2019. Allele frequency-free inference of close familial relationships from genotypes or low-depth sequencing data. Molecular Ecology 28, 3548.10.1111/mec.14954CrossRefGoogle ScholarPubMed
Warinner, C., Korzow Richter, K., Collins, M.J., 2022. Paleoproteomics. Chemical Reviews 122, 1340113446.10.1021/acs.chemrev.1c00703CrossRefGoogle ScholarPubMed
Winkler, D.W., Billerman, S.M., Lovette, I.J., 2020. Motacillidae: wagtails and pipits, version 1.0. In: Billerman, S.M., Keeney, B.K., Rodewald, P.G., Schulenberg, T.S. (Eds.), Birds of the World. Cornell Lab of Ornithology, Ithaca, New York. https://doi.org/10.2173/bow.motaci1.01.Google Scholar
World Flora Online, 2024. The WFO Plant List. https://wfoplantlist.org/.Google Scholar
Yeakel, J.D., GuimarãesJr, P.R., Bocherens, H., Koch, P.L., 2013. The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe. Proceedings of the Royal Society B: Biological Sciences 280, 20130239. https://doi.org/10.1098/rspb.2013.0239.CrossRefGoogle ScholarPubMed
Zeder, M.A., 2012. The domestication of animals. Journal of Anthropological Research 68, 161190.10.3998/jar.0521004.0068.201CrossRefGoogle Scholar
Zeder, M.A., 2015. Core questions in domestication research. Proceedings of the National Academy of Sciences of the United States of America 112, 31913198.10.1073/pnas.1501711112CrossRefGoogle ScholarPubMed
Supplementary material: File

Runge et al. supplementary material 1

Runge et al. supplementary material
Download Runge et al. supplementary material 1(File)
File 45 MB
Supplementary material: File

Runge et al. supplementary material 2

Runge et al. supplementary material
Download Runge et al. supplementary material 2(File)
File 887 KB
Supplementary material: File

Runge et al. supplementary material 3

Runge et al. supplementary material
Download Runge et al. supplementary material 3(File)
File 41.5 KB