Hostname: page-component-54dcc4c588-b5cpw Total loading time: 0 Render date: 2025-10-05T03:35:03.733Z Has data issue: false hasContentIssue false

Late Pleistocene small mammal community from the Chongphadae Cave Site (DPRK)

Published online by Cambridge University Press:  22 September 2025

Rye-Sun Choe*
Affiliation:
Institute of Human Evolution and Development History, Faculty of History, Kim Il Sung University, Taesong District, Pyongyang, Democratic People’s Republic of Korea
Kum-Sik Han
Affiliation:
Institute of Human Evolution and Development History, Faculty of History, Kim Il Sung University, Taesong District, Pyongyang, Democratic People’s Republic of Korea
Jun-Chol Kanga
Affiliation:
Institute of Human Evolution and Development History, Faculty of History, Kim Il Sung University, Taesong District, Pyongyang, Democratic People’s Republic of Korea
Myong-Won Ri
Affiliation:
Faculty of Foreign languages and Literature, Kim Il Sung University, Taesong District, Pyongyang, Democratic People’s Republic of Korea
Ryong-Il Kanga
Affiliation:
Institute of Human Evolution and Development History, Faculty of History, Kim Il Sung University, Taesong District, Pyongyang, Democratic People’s Republic of Korea
Hyon-Hui Yunc
Affiliation:
Department of Nature, Kim Jong Suk Teacher Training College, Hoeryong, North Hamgyong Province
Song-Il Kimd
Affiliation:
Faculty of History, Sinpho Kim Hyong Gwon College of Education, Sinpho, South Hamgyong Province
*
Corresponding author: Rye-Sun Choe; Email: rs.choe0327@ryongnamsan.edu.kp

Abstract

This paper treats new data about small mammals from the Chongphadae Cave Site, Democratic People’s Republic of Korea. Seven samples from Layers 8–10 and 12–15 included 161 tooth fossils of small mammals. The composition of small mammal assemblage is 3 orders, 5 families, and 11 species, which are 1 insectivore taxon, 1 lagomorph taxon, and 9 rodent taxa. The community development is distinguished into five stages (62.122–19.630 ka), and stage I is characterized by the dominance of xerophilous elements, including Myospalax epsilanus, Microtus brandti, and Cricetulus barabensis. Alternating between mesophilous and xerophilous elements, the last stage (stage IV) of community development is characterized by the existence of only mesophilous elements, such as Ochotona alpina and Erinaceus sp. The dynamics of small mammal communities of the Chongphadae Cave Site demonstrate that alternation between mesophilous and xerophilous elements during the Late Pleistocene contributed to the formation of the modern mosaic landscape consisting of forests, grasslands, and riverside.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alexeeva, N.V., 2006. Overview of Myospalacids (Cricetidae, Myospalacinae) from Transbaikalia. Beiträge zur Paläontologie 30, 14.Google Scholar
Athanassiou, A., 2018. Pleistocene vertebrates from the Kyparíssia lignite mine, Megalopolis Basin, S. Greece: Rodentia, Carnivora, Proboscidea, Perissodactyla, Ruminantia. Quaternary International 497, 198221.10.1016/j.quaint.2018.06.042CrossRefGoogle Scholar
Barisone, G., Argenti, P., Kotsakis, T., 2006. Plio-Pleistocene evolution of the genus Castor (Rodentia, Mammalia) in Europe: C. fiber plicidens of Pietrafitta (Perugia, Central Italy). Geobios 39, 757770.10.1016/j.geobios.2005.10.004CrossRefGoogle Scholar
Batzli, G.O., 1999. Can seasonal changes in density dependence drive population cycles? Tree 14, 129131.Google ScholarPubMed
Berto, C., Luzi, E., Canini, G.M., Guerreschi, A., Fontana, F., 2018. Climate and landscape in Italy during Late Epigravettian. The Late Glacial small mammal sequence of Riparo Tagliente (Stallavena di Grezzana, Verona, Italy). Quaternary Science Reviews 184, 132142.10.1016/j.quascirev.2017.07.022CrossRefGoogle Scholar
Choe, R.S., Han, K.S., Kim, S.C., Ho, C.U., Kang, I., 2020. Late Pleistocene fauna from Chongphadae Cave, Hwangju County, Democratic People’s Republic of Korea. Quaternary Research 97, 4254.10.1017/qua.2020.9CrossRefGoogle Scholar
Choe, R.S., Han, K.S., Kim, S.C., Ri, M.H., Ri, J.N., 2021. Preliminary investigation of Late Pleistocene fauna from Ryonggok Cave No. 1, Sangwon County, North Hwanghae Province, Democratic People’s Republic of Korea. Journal of Quaternary Science 36, 11371142.10.1002/jqs.3346CrossRefGoogle Scholar
Cuenca-Bescós, G., Ardevol, J.R., Morcillo-Amo, Á., Galindo-Pellicena, M. Á., Santos, E., Costa, R.M., 2015. Beavers (Castoridae, Rodentia, Mammalia) from the Quaternary sites of the Sierra de Atapuerca, in Burgos, Spain. Quaternary International 433(Part A), 263277.10.1016/j.quaint.2015.10.072CrossRefGoogle Scholar
Dammhahn, M., Randriamoria, T.M., Goodman, S.M., 2017. Broad and flexible stable isotope niches in invasive non-native Rattus spp. in anthropogenic and natural habitats of central eastern Madagascar. BMC Ecology 17, 113.10.1186/s12898-017-0125-0CrossRefGoogle ScholarPubMed
Danišová, O., Valenčáková, A., Stanko, M., Luptáková, L., Hatalová, E., Čanády, A., 2017. Rodents as a reservoir of infection caused by multiple zoonotic species/genotypes of C. parvum, C. hominis, C. suis, C. scrofarum, and the first evidence of C. muskrat genotypes I and II of rodents in Europe. Acta Tropica 172, 2935.10.1016/j.actatropica.2017.04.013CrossRefGoogle ScholarPubMed
Erbajeva, M.A., Khenzykhenova, F. I., Alexeeva, N.V., 2011. Late Pleistocene and Holocene environmental peculiarity of the Baikalian region, based on mammal associations and deposits. Quaternary International 237, 3944.10.1016/j.quaint.2011.01.014CrossRefGoogle Scholar
Fernández-García, M., 2019. Late Pleistocene palaeoenvironmental reconstruction of Northeastern Iberia: taxonomic, taphonomic and isotopic approach based on small-mammal assemblages. Doctoral thesis, Museum national d’histoire naturelle–MNHN, Paris, Università degli Studi di Ferrara, Ferrare, Italy.Google Scholar
Fu, H.P., Yuan, S., Man, D.H., Chai, X.X., Yang, S.W., Bao, D.H., Wu, X.D., 2018. The burrow behavior and influenced factors of a prairie subterranean zokor (Myospalax psilurus). Ecology and Evolution 8, 1277312779.10.1002/ece3.4705CrossRefGoogle ScholarPubMed
Galán-Puchades, M.T., Sanxis-Furió, J., Pascual, J., Bueno-Marí, R., Franco, S., Peracho, V., Montalvo, T., Fuentes, M.V., 2018. First survey on zoonotic helminthosis in urban brown rats (Rattus norvegicus) in Spain and associated public health considerations. Veterinary Parasitology 259, 4952.10.1016/j.vetpar.2018.06.023CrossRefGoogle Scholar
Garcia-Ibaibarriaga, N., Rofes, J., Bailon, S., Garate, D., Rios-Garaizar, J., Martinez-Garcia, B., Murelaga, X., 2014. A palaeoenvironmental estimate in Askondo (Bizkaia, Spain) using small vertebrates. Quaternary International 364, 244254.10.1016/j.quaint.2014.09.069CrossRefGoogle Scholar
Hoshino, B., Ganzorig, S., Umegaki, K., Nurtazin, S.T., 2014. Habitat selection and ecosystem resilience role of Microtus brandti voles in degraded pasture in Mongolia. CEBE, http://dx.doi:10.5176/0000-0000_CEBE14.16.CrossRefGoogle Scholar
Hutchins, M., Kleiman, D.G., Geist, V., McDade, M.C. (Eds.), 2004. Grzimek’s Animal Life Encyclopedia. 2nd ed. Vols. 13 and 16, Mammals V. Gale Group, Farmington Hills, MI.Google Scholar
Kikuzawa, K., 1988. Dispersal of Quercus mongolica acorns in a broadleaved deciduous forest 1. Disappearance. Forest Ecology and Management 25, 18.10.1016/0378-1127(88)90129-6CrossRefGoogle Scholar
Kim, S.C., Choe, R.S., Kim, I.N., U, C., Kang, R.I., 2023. Late Pleistocene spore-pollen record and climatic change at the Chongphadae Cave Site, Democratic People’s Republic of Korea. Journal of Palaeogeography 12, 624636.Google Scholar
Konidaris, G.E., Athanassiou, A., Tourloukis, V., Thompson, N., Giusti, D., Panagopoulou, E., Harvati, K., 2017. The skeleton of a straight-tusked elephant (Palaeoloxodon antiquus) and other large mammals from the Middle Pleistocene butchering locality Marathousa 1 (Megalopolis Basin, Greece): preliminary results. Quaternary International 497, 6584.10.1016/j.quaint.2017.12.001CrossRefGoogle Scholar
Kuzmina, E.A., Smirnov, N.G., Ulitko, A.I., 2016. New data on Late Pleistocene–Holocene small mammal communities from the Ural–Sakmara interfluve, Southern Urals. Quaternary International 420, 5664.10.1016/j.quaint.2016.02.007CrossRefGoogle Scholar
Lebedev, V.S., Bannikova, A.A., Adiya, Y., Shar, S., Surov, A.V., 2016. A revised checklist of Mongolian mammal species. Erforschung biologischer Ressourcen der Mongolei 13, 349360.Google Scholar
Liu, J.S., Sun, R.Y., Wang, D.H., 2006. Thermogenic properties in three rodent species from northeastern China in summer. Journal of Thermal Biology 31, 172176.10.1016/j.jtherbio.2005.11.005CrossRefGoogle Scholar
Liu, J.S., Wang, D.H., Sun, R.Y., 2004. Metabolism and thermoregulation in three species of rodent from northeastern China. Journal of Thermal Biology 29, 177183.10.1016/j.jtherbio.2004.02.003CrossRefGoogle Scholar
Liu, T.S., 1967. Collected Works on China’s Loess Soil. U.S. Department of Commerce, Washington, D.C.Google Scholar
Lopucki, R., Klich, D., Scibior, A., Golebiowska, D., Perzanowski, K., 2018. Living in habitats affected by wind turbines may result in an increase in corticosterone levels in ground dwelling animals. Ecological Indicators 84, 165171.10.1016/j.ecolind.2017.08.052CrossRefGoogle Scholar
Miller, K.F., Wilson, D.J., Hartley, S., Innes, J.G., Fitzgerald, N.B., Miller, P., Heezik, Y., 2022. Invasive urban mammalian predators: distribution and multi-scale habitat selection. Biology 11, 126.10.3390/biology11101527CrossRefGoogle ScholarPubMed
Orlov, V.N., Lyapunova, E.A., Baskevich, M.I., Kartavtseva, I.V., Malygin, V.M., Bulatova, N.S., 2023. Mammalian cytogenetics and its contribution to the development of chromosomal diagnoses and the species system. Biology Bulletin 50, 23332353.10.1134/S1062359023090273CrossRefGoogle Scholar
Osipov, A.N., Sypin, O.G., Ilyinov, A.N., Ryazanov, I.A., Elakov, A.L., Afonin, V.Y., Egorov, V.G., 2006. Radiobiological monitoring of striped field mouse populations in the Moscow recreation forest “Kuzminki.” Journal of Environmental Radioactivity 85, 361368.10.1016/j.jenvrad.2005.01.015CrossRefGoogle ScholarPubMed
Pavlenko, M.V., Tsvirka, M.V., Korablev, V.P., Puzachenko, A.Y., 2014. Distribution of Zokors (Rodentia, Spalacidae, Myospalacinae) in eastern Russia based on genetic and morphological analysis. Achievements in the Life Sciences 8, 8994.10.1016/j.als.2015.01.001CrossRefGoogle Scholar
Pei, W.C., 1936. On the mammalian remains from Locality 3 at Choukoutien. Palaeontologia Sinica, series C 7, 7108.Google Scholar
Rey-Rodríguez, I., López-García, J.M., Bennàsar, M., Bañuls-Cardona, S., Blain, H.A., Blanco-Lapaz, Á., Rodríguez-Álvarez, X.P., Lombera-Hermida, A., 2016. Last Neanderthals and first anatomically modern humans in the NW Iberian Peninsula: climatic and environmental conditions inferred from the Cova Eirós small-vertebrate assemblage during MIS 3. Quaternary Science Reviews 151, 185197.10.1016/j.quascirev.2016.08.030CrossRefGoogle Scholar
Rhodes, S.E., Ziegler, R., Starkovich, B.M., Conard, N.J., 2018. Small mammal taxonomy, taphonomy, and the paleoenvironmental record during the Middle and Upper Paleolithic at Geißenklösterle Cave (Ach Valley, southwestern Germany). Quaternary Science Reviews 185, 199221.10.1016/j.quascirev.2017.12.008CrossRefGoogle Scholar
Sato, T., Khenzykhenova, F., Simakova, A., Danukalova, G., Morosova, E., Yoshida, K., Kunikita, D., Kato, H, Suzuki, K, Lipnina, E, Medvedev, G., 2014. Paleoenvironment of the Fore-Baikal region in the Karginian interstadial: results of the interdisciplinary studies of the Bol’shoj Naryn site. Quaternary International 333, 146155.10.1016/j.quaint.2013.12.050CrossRefGoogle Scholar
Sawamukai, M., Hoshino, B., Ganzorig, S., Purevsuren, T., Asakawa, M., Kawashima, K., 2012. Preliminary results on surface and soil characteristics of Brandt’s vole (Microtus brandti) habitat in Central Mongolia using satellite data. Journal of Arid Land Studies 22, 295298.Google Scholar
Svendsen, J., Alexanderson, H., Astakhov, V., Demidov, I., Dowdeswell, J., Funder, S., Gataullin, V., Henriksen, M, Hjort, C, Houmark-Nielsen, M, Hubberten, HW, 2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 12291271.10.1016/j.quascirev.2003.12.008CrossRefGoogle Scholar
U, C., Choe, R.S., Ri, J.N., Han, M.G., 2022. Paleoenvironment and human activity on the central Korean Peninsula during the late MIS 3 and MIS 2. Quaternary Research 112, 6777.10.1017/qua.2022.48CrossRefGoogle Scholar
Wang, G.M., Zhong, W.Q., Zhou, Q.Q., Wang, Z.W., 2003. Soil water condition and small mammal spatial distribution in Inner Mongolian steppes, China. Journal of Arid Environments 54, 729737.10.1006/jare.2002.1083CrossRefGoogle Scholar
Young, C.C., 1934. On the Insectivora, Chiroptera, Rodentia and primates other than Sinanthropus from Locality 1 at Choukoutien. Palaeontologia Sinica, series C 8, 9134.Google Scholar
Zhang, Z., Pech, R., Davis, S., Shi, D., Wan, X., Zhong, W., 2003. Extrinsic and intrinsic factors determine the eruptive dynamics of Brandti’s voles (Microtus brandti) in Inner Mongolia, China. Oikos 100, 299310.10.1034/j.1600-0706.2003.11810.xCrossRefGoogle Scholar
Zheng, S.H., 1984. Revised determination of the fossil Cricetine (Rodentia Mammalia) of Choukoutien District. Vertebrata PalAsiatica 22, 179197.Google Scholar
Zhong, W.Q., Zhon, Q.Q., Sun, C.L., 1985. The vegetation and habitat selection by the Brandti’s vole (Microtus brandti) in Inner Mongolia steppe. Res. Grassland Ecosystem 1, 147157.Google Scholar
Zhou, S.S., Cao, L.L., Xu, W.D., Cao, J., Zhao, Z.J., 2015. Effect of temperature on oxidative stress, antioxidant levels and uncoupling protein expression in striped hamsters. Comparative Biochemistry and Physiology, part A 189, 8490.10.1016/j.cbpa.2015.07.017CrossRefGoogle ScholarPubMed