Hostname: page-component-54dcc4c588-r5qjk Total loading time: 0 Render date: 2025-10-05T01:34:45.309Z Has data issue: false hasContentIssue false

Characteristics of Late Pleistocene and Holocene dune activity and soil formation in the Podravina, NE Croatia

Published online by Cambridge University Press:  02 September 2025

Koen Beerten*
Affiliation:
Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
Lidija Galović
Affiliation:
Croatian Geological Survey, Zagreb, Croatia
Mihajlo Pandurov
Affiliation:
Geological Survey of Serbia, Belgrade, Serbia
Petar Stejić
Affiliation:
Geological Survey of Serbia, Belgrade, Serbia
Rodoljub Gajić
Affiliation:
Geological Survey of Serbia, Belgrade, Serbia
Jasmina Martinčević Lazar
Affiliation:
Croatian Geological Survey, Zagreb, Croatia
Branko Kordić
Affiliation:
Croatian Geological Survey, Zagreb, Croatia
Ajka Pjanić
Affiliation:
Croatian Geological Survey, Zagreb, Croatia
*
Corresponding author: Koen Beerten; Email: kbeerten@sckcen.be

Abstract

The Đurđevac Sands constitute a wide area of small-scale dune relief in the Podravina (NE Croatia), located along the central part of the southern Drava River valley. Even though it has been the subject of earlier investigations, the timing and characteristics of aeolian activity and pedogenesis remain unclear. In this study, field investigations and laboratory methods are combined to gather information on past aeolian systems in the southern part of the Pannonian Basin. The results indicate that weak soil formation during the Bølling-Allerød interstadial stabilized the dunes after the first episode of aeolian activity that took place since ca. 18 ka. The source material for dune building is thought to be fluvial sand from the Drava River, which was blown from exposed terraces. During the Younger Dryas and/or Early Holocene, a new phase of aeolian activity is recorded, with material showing stronger evidence of weathering compared to the underlying aeolian material. Finally, during the Mid and/or Late Holocene, dunes were overbuilt once again with fresh unweathered sand. In general, these new findings obtained from the Đurđevac Sands area correlate rather well with other regions in the Pannonian Basin, in terms of the timing and characteristics of soil formation and aeolian activity.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adamiec, G., Aitken, M., 1998. Dose-rate conversion factors: update. Ancient TL 16, 3750. https://doi.org/10.26034/la.atl.1998.292.CrossRefGoogle Scholar
Beerten, K., Lomax, J., Clémer, K., Stesmans, A., Radtke, U., 2006. On the use of Ti centres for estimating burial ages of Pleistocene sedimentary quartz: multiple-grain data from Australia. Quaternary Geochronology 1, 151158. https://doi.org/10.1016/j.quageo.2006.05.037.CrossRefGoogle Scholar
Bónová, K., Bóna, J., Mikuš, T., Ferková, A., 2024. Heavy minerals of the aeolian sediments in the East Slovak Basin (Western Carpathians) – implications for their origin, transport process and sedimentary history. Aeolian Research 66, 100897. https://doi.org/10.1016/j.aeolia.2024.100897.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360. https://doi.org/10.1017/s0033822200033865.CrossRefGoogle Scholar
Buró, B., Sipos, G., Lóki, J., Andrási, B., Félegyházi, E., Négyesi, G., 2016. Assessing Late Pleistocene and Holocene phases of aeolian activity on the Nyírség alluvial fan, Hungary. Quaternary International 425, 183195. https://doi.org/10.1016/j.quaint.2016.01.007.CrossRefGoogle Scholar
Derese, C., Vandenberghe, D., Paulissen, E., Van den Haute, P., 2009. Revisiting a type locality for late glacial aeolian sand deposition in NW Europe: Optical dating of the dune complex at Opgrimbie (NE Belgium). Geomorphology 109, 2735. https://doi.org/10.1016/j.geomorph.2008.08.022.CrossRefGoogle Scholar
du Pont, S.C., Rubin, D.M., Narteau, C., Lapôtre, M.G.A., Day, M., Claudin, P., Livingstone, I., et al., 2024. Complementary classifications of aeolian dunes based on morphology, dynamics, and fluid mechanics. Earth-Science Reviews 255, 104772. https://doi.org/10.1016/j.earscirev.2024.104772.CrossRefGoogle Scholar
Faivre, S., Galović, L., Sümegi, P., Cvitanović, M., Náfrádi, K., Horvatinčić, N., 2019. Palaeoenvironmental reconstruction of the Milna valley on the island of Vis (Central Adriatic) during the Late Holocene. Quaternary International 510, 1-17. https://doi.org/10.1016/j.quaint.2018.11.017.CrossRefGoogle Scholar
Franjo, I., 1997. Geomorfološke osobine Molvarskih Pijesaka [in Croatian with English abstract]. Podravski Zbornik 23, 205218.Google Scholar
Gábris, G., Horváth, E., Novothny, Á., Ruszkiczay-Rüdiger, Z., 2012. Fluvial and aeolian landscape evolution in Hungary – results of the last 20 years research. Netherlands Journal of Geosciences – Geologie en Mijnbouw 91, 111128. https://doi.org/10.1017/S0016774600001530.CrossRefGoogle Scholar
Galović, L., 2014. Geochemical archive in the three loess/paleosol sections in the Eastern Croatia: Zmajevac I, Zmajevac and Erdut. Aeolian Research 15, 113132. http://dx.doi.org/10.1016/j.aeolia.2014.07.004.CrossRefGoogle Scholar
Galović, L., 2016. Sedimentological and mineralogical characteristics of the Pleistocene loess/paleosol sections in the Eastern Croatia. Aeolian Research 20, 723. http://dx.doi.org/10.1016/j.aeolia.2015.10.007.CrossRefGoogle Scholar
Galović, L., Beerten, K., Hećej, N., and Posilović, H., 2023a. Đurđevac Sands and the intraformational paleosoils (Podravina, N Croatia) are newly dated to Late Pleistocene/Holocene. Geologica Carpathica 74, 181194. https://doi.org/10.31577/GeolCarp.2023.07.CrossRefGoogle Scholar
Galović, L., Frechen, M., Halamić, J., Durn, G., Romić, M., 2009. Loess chronostratigraphy in Eastern Croatia – a luminescence dating approach. Quaternary International 198, 8597. https://doi.org/10.1016/j.quaint.2008.02.004.CrossRefGoogle Scholar
Galović, L., Frechen, M., Peh, Z., Durn, G., Halamić, J., 2011. Loess/palaeosol section in Šarengrad, Croatia – a qualitative discussion on the correlation of the geochemical and magnetic susceptibility data. Quaternary International 240, 2234. https://doi.org/10.1016/j.quaint.2011.02.003.CrossRefGoogle Scholar
Galović, L., Husnjak, S., Šorša, A., Martinčević Lazar, J., 2023b. Evidence and mineralogical and physico-chemical properties of chernozem and chernozem-like soils in Croatia. Geologia Croatica 76, 113129. https://doi.org/10.4154/gc.2023.08.CrossRefGoogle Scholar
Galović, L., Posilović, H., 2017. Geneza i značenje eolskih naslaga Podravine [Genesis and significance of aeolian deposits of the Podravina area]. In: Bašić, F., Feletar, D., (Eds.), Zbornik sažetaka sa Znanstvenog skupa Đurđevački pijesci – geneza, stanje i perspektive [Proceedings of the Scientific Symposium Đurđevac Sands - genesis, state and future]. Croatian Academy of Sciences and Arts, Institute for Scientific Research and Artistic Work in Križevci, Zagreb-Križevci, 3.Google Scholar
Györgyövics, K., Kiss, T., 2013. Dune hierarchy and morphometric classes of the parabolic sand dune association of Inner Somogy, Hungary. Studia Geomorphologica Carpatho-Balcanica 47, 3148.10.2478/sgcb-2013-0003CrossRefGoogle Scholar
Györgyövics, K., Kiss, T., Sipos, G., 2014. Grain size distribution of stabilised aeolian dune sediments in Inner Somogy, Hungary. Journal of Environmental Geography 7, 2130. https://doi.org/10.2478/jengeo-2014-0009.CrossRefGoogle Scholar
Hećimović, I., 1987. Osnovna geološka karta SFRJ 1:100.000. Tumač za list Đurđevac L33–71 [Basic geological map of SFRY, scale 1:100.000, Guidebook of the geological map for the Đurđevac sheet]. Federal Geological Survey, Belgrade, 139. [in Croatian]Google Scholar
Hećimović, I., 1988. Osnovna geološka karta SFRJ 1:100.000, list Đurđevac L33–71 [Basic geological map of SFRY, scale 1:100.000, Sheet Đurđevac L33–71]. Federal Geological Survey, Belgrade. [in Croatian]Google Scholar
Hesp, P., Martinez, M., da Silva, G.M., Rodríguez-Revelo, N., Gutierrez, E., Humanes, A., Laínez, D., et al., 2011. Transgressive dunefield landforms and vegetation associations, Doña Juana, Veracruz, Mexico. Earth Surface Processes and Landforms 36, 285295. https://doi.org/10.1002/esp.2035.CrossRefGoogle Scholar
Holuša, J., Moska, P., Nývlt, D., Woronko, B., 2024. OSL-based chronology of the cold-climate aeolian sand dunes, Moravian Sahara, lower Morava Basin, Czechia. Quaternary Science Reviews 334, 108718. https://doi.org/10.1016/j.quascirev.2024.108718.CrossRefGoogle Scholar
Holuša, J., Nývlt, D., Woronko, B., Matějka, M., Stuchlík, R., 2022. Environmental factors controlling the last glacial multi-phase development of the Moravian Sahara dunefield, Lower Moravian Basin, Central Europe. Geomorphology 413, 108355. https://doi.org/10.1016/j.geomorph.2022.108355.CrossRefGoogle Scholar
ISO 11277, 2011. Soil Quality – Determination of Particle Size Distribution in Mineral Soil Material – Method by Sieving and Sedimentation (ISO 11277:2009). International Organization for Standardization, Geneva.Google Scholar
Kaiser, K., Hilgers, A., Schlaak, N., Jankowski, M., Kuhn, P., Bussemer, S., Przegiȩtka, K., 2009. Palaeopedological marker horizons in northern Central Europe: characteristics of lateglacial Usselo and Finow soils. Boreas 38, 591609. https://doi.org/10.1111/j.1502-3885.2008.00076.x.CrossRefGoogle Scholar
Kasse, C., 1997. Cold-climate sand-sheet formation in north-western Europe (c. 14–12.4 ka); a response to permafrost degradation and increased aridity. Permafrost and Periglacial Processes 8, 295311. https://doi.org/10.1002/(sici)1099-1530(199709)8:3<295::aid-ppp256>3.0.co;2-0.3.0.CO;2-0>CrossRefGoogle Scholar
Kasse, C., Vandenberghe, D., De Corte, F. and Van den Haute, P., 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Science 22, 695708. https://doi.org/10.1002/jqs.1087.CrossRefGoogle Scholar
Kasse, C., Woolderink, H.A.G., Kloos, M.E., Hoek, W.Z., 2020. Source-bordering aeolian dune formation along the Scheldt River (southern Netherlands–northern Belgium) was caused by Younger Dryas cooling, high river gradient and southwesterly summer winds. Netherlands Journal of Geosciences 99, e13. https://doi.org/10.1017/njg.2020.15.CrossRefGoogle Scholar
Kiss, T., Sipos, G., Mauz, B., Mezősi, G., 2012. Holocene aeolian sand mobilization, vegetation history and human impact on the stabilized sand dune area of the southern Nyírség, Hungary. Quaternary Research 78, 492501. https://doi.org/10.1016/j.yqres.2012.07.002.CrossRefGoogle Scholar
Lehmkuhl, F., Nett, J.J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., et al., 2021. Loess landscapes of Europe – mapping, geomorphology, and zonal differentiation. Earth-Science Reviews 215, 103496. https://doi.org/10.1016/j.earscirev.2020.103496.CrossRefGoogle Scholar
Lévesque, Y., Walter, J., Chesnaux, R., Dugas, S., Noel, D., 2023. Electrical resistivity of saturated and unsaturated sediments in northeastern Canada. Environmental Earth Sciences 82, 303. https://doi.org/10.1007/s12665-023-10998-w.CrossRefGoogle Scholar
Łopuch, M., Zieliński, P., Jary, Z., 2023. Morphometry of the cold-climate Bory Stobrawskie Dune Field (SW Poland): evidence for multi-phase lateglacial aeolian activity within the European Sand Belt. Open Geosciences 15, 20220518. https://doi.org/10.1515/geo-2022-0518.CrossRefGoogle Scholar
Magyari, E.K., Pál, I., Vincze, I., Veres, D., Jakab, G., Braun, M., Szalai, Z., Szabó, Z., Korponai, J., 2019. Warm Younger Dryas summers and early late glacial spread of temperate deciduous trees in the Pannonian Basin during the last glacial termination (20–9 kyr cal BP). Quaternary Science Reviews 225, 105980. https://doi.org/10.1016/j.quascirev.2019.105980CrossRefGoogle Scholar
Marković, R., Perić, Z.M., Gavrilov, M.B., Markovic, S., Vandenberghe, J., Schaetzl, R.J., Obreht, I., et al., 2024. Aeolian dynamics at the northern edge of Deliblato (Banat) Sand Sea, Vojvodina, Serbia, at the time of the last deglaciation. Quaternary Research 121, 5972. https://doi.org/10.1017/qua.2024.13.CrossRefGoogle Scholar
Marković, S.B., Stevens, T., Kukla, G.J., Hambach, U., Fitzsimmons, K.E., Gibbard, P., Buggle, B., et al., 2015. Danube loess stratigraphy—towards a pan-European loess stratigraphic model. Earth-Science Reviews 148, 228258. https://doi.org/10.1016/j.earscirev.2015.06.005.CrossRefGoogle Scholar
Mioč, P., Marković, S., 1998. Osnovna geološka karta 1:100.000, list Čakovec 33-57 [Basic geological map, scale 1:100.000, Sheet Čakovec 33-57]. Institut za Geološka Istraživanja, Zagreb, Inštitut za Geologijo, Geotehniko in Geofiziko, Ljubljana. [in Croatian]Google Scholar
Mioč, P., Žnidarčič, M., 1977. Osnovna geološka karta SFRJ 1:100.000, list Slovenj Gradec L 33-55 [Basic geological map of SFRY, scale 1:100.000, Sheet Slovenj Gradec L 33-55]. Federal Geological Survey of Yugoslavia, Belgrade. [in Slovenian]Google Scholar
Munsell Color (Firm), 2010. Munsell Soil Color Charts. Munsell Color, Grand Rapids, Michigan.Google Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381. https://doi.org/10.1016/s1350-4487(03)00053-2.CrossRefGoogle Scholar
Novothny, A., Frechen, M., Horvath, E., 2010. Luminescence dating of periods of sand movement from the Gödöllő Hills, Hungary. Geomorphology 122, 254263. https://doi.org/10.1016/j.geomorph.2010.04.013.CrossRefGoogle Scholar
Obreht, I., Zeeden, C., Hambach, U., Veres, D., Marković, S.B., Lehmkuhl, F., 2019. A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin. Earth-Science Reviews 190, 498520. https://doi.org/10.1016/j.earscirev.2019.01.020.CrossRefGoogle Scholar
Pavelić, D., 2002. Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Research 13, 359376. https://doi.org/10.1046/j.0950-091x.2001.00155.x.CrossRefGoogle Scholar
Peh, Z., Šajn, R., Halamić, J., Galović, L., 2008. Multiple discriminant analysis of the Drava River alluvial plain sediments. Environmental Geology 55, 15191535. https://doi.org/10.1007/s00254-007-1102-2.CrossRefGoogle Scholar
Petrić, H., 2009. Fluvial-aeolian sands in Croatia. Environmental history case study: Djurdjevac Sands (Đurđevački Pijesci). Podravina 8(16), 8997.Google Scholar
Prelogović, E., Saftić, B., Kuk, V., Velić, J., Dragaš, M., Lučić, D., 1998. Tectonic activity in the Croatian part of the Pannonian basin. Tectonophysics 297, 283293. https://doi.org/10.1016/s0040-1951(98)00173-5.CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500. https://doi.org/10.1016/1350-4487(94)90086-8.CrossRefGoogle Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., et al., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725757. https://doi.org/10.1017/rdc.2020.41.CrossRefGoogle Scholar
Rubinić, V., Galović, L., Husnjak, S., Durn, G., 2015. Climate vs. parent material – which is the key of Stagnosol diversity in Croatia? Geoderma 241/242, 250261. https://doi.org/10.1016/j.geoderma.2014.11.029.CrossRefGoogle Scholar
Rubinić, V., Galović, L., Lazarević, B., Husnjak, S., Durn, G., 2018. Pseudogleyed loess derivates – the most common soil parent materials in the Pannonian region of Croatia. Quaternary International 494, 248262. https://doi.org/10.1016/j.quaint.2017.06.044.CrossRefGoogle Scholar
Sebe, K., Csillag, G., Ruszkiczay-Rüdiger, Z., Fodor, L., Thamó-Bozsó, E., Müller, P., Braucher, R., 2011. Wind erosion under cold climate: a Pleistocene periglacial mega-yardang system in Central Europe (Western Pannonian Basin, Hungary). Geomorphology 134, 470482. https://doi.org/10.1016/j.geomorph.2011.08.003.CrossRefGoogle Scholar
Sipos, G., Marković, S.B., Gavrilov, M.B., Balla, A., Filyó, D., Bartyik, T., Mészáros, M., et al., 2022. Late Pleistocene and Holocene aeolian activity in the Deliblato Sands, Serbia. Quaternary Research 107, 113124. https://doi.org/10.1017/qua.2021.67.CrossRefGoogle Scholar
Słowik, M., Dezső, J., Salem, A., Puhl-Rezsek, M., Gałka, M., Kovács, J., 2023. The evolution of meandering rivers in sedimentary basins: insights from the lower Drava (Hungary/Croatia). Earth Surface Processes and Landforms 49, 642663. https://doi.org/10.1002/esp.5726.CrossRefGoogle Scholar
Taylor, R.E., 1987. Radiocarbon Dating: An Archaeological Perspective. Academic Press, New York.Google Scholar
Ujházy, K., Gábris, G., Frechen, M., 2003. Ages of periods of sand movement in Hungary determined through luminescence measurements. Quaternary International 111, 91100. https://doi.org/10.1016/s1040-6182(03)00017-x.CrossRefGoogle Scholar
Vandenberghe, D.A.G., Derese, C., Kasse, C., Van den haute, P., 2013. Late Weichselian (fluvio-)aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high resolution dating study using optically stimulated luminescence. Quaternary Science Reviews 68, 96113. https://doi.org/10.1016/j.quascirev.2013.02.009.CrossRefGoogle Scholar
Vandenberghe, D., De Corte, F., Buylaert, J.-P., Kučera, J., Van den haute, P., 2008. On the internal radioactivity in quartz. Radiation Measurements 43, 771775. https://doi.org/10.1016/j.radmeas.2008.01.016.CrossRefGoogle Scholar
Wacha, L., Matoš, B., Kunz, A., Lužar-Oberiter, B., Tomljenović, B., Banak, A., 2018. First post-IR IRSL dating results of Quaternary deposits from Bilogora (NE Croatia): implications for the Pleistocene relative uplift and incision rates in the area. Quaternary International 494, 193210. https://doi.org/10.1016/j.quaint.2017.08.049.CrossRefGoogle Scholar
Warr, L.N., 2021. IMA–CNMNC approved mineral symbols. Mineralogical Magazine 85, 291320. https://doi.org/10.1180/mgm.2021.43.CrossRefGoogle Scholar
Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediment. Journal of Geology 30, 377392. https://doi.org/10.1086/622910.CrossRefGoogle Scholar
Zakwan, M., Pham, Q.B., Bonacci, O., Đurin, B., 2022. Application of revised innovative trend analysis in lower Drava River. Arabian Journal of Geosciences 15, 758. https://doi.org/10.1007/s12517-022-09591-5.CrossRefGoogle Scholar