No CrossRef data available.
Published online by Cambridge University Press: 01 January 2025
This paper demonstrates the feasibility of using a Newton-Raphson algorithm to solve the likelihood equations which arise in maximum likelihood factor analysis. The algorithm leads to clean easily identifiable convergence and provides a means of verifying that the solution obtained is at least a local maximum of the likelihood function. It is shown that a popular iteration algorithm is numerically unstable under conditions which are encountered in practice and that, as a result, inaccurate solutions have been presented in the literature. The key result is a computationally feasible formula for the second differential of a partially maximized form of the likelihood function. In addition to implementing the Newton-Raphson algorithm, this formula provides a means for estimating the asymptotic variances and covariances of the maximum likelihood estimators.
This research was supported by the Air Force Office of Scientific Research, Grant No. AF-AFOSR-4.59-66 and by National Institutes of Health, Grant No. FR-3.