Hostname: page-component-54dcc4c588-42vt5 Total loading time: 0 Render date: 2025-10-08T03:24:09.900Z Has data issue: false hasContentIssue false

The structure of finite groups whose elements outside a normal subgroup have prime power orders

Published online by Cambridge University Press:  18 September 2024

Changguo Shao
Affiliation:
College of Science, Nanjing University of Posts and Telecommunications, 210023 Nanjing, China (cgshao@njupt.edu.cn; syjqh2001@163.com)
Qinhui Jiang*
Affiliation:
College of Science, Nanjing University of Posts and Telecommunications, 210023 Nanjing, China (cgshao@njupt.edu.cn; syjqh2001@163.com)
*
*Corresponding author.

Abstract

The structure of groups in which every element has prime power order (CP-groups) is extensively studied. We first investigate the properties of group $G$ such that each element of $G\setminus N$ has prime power order. It is proved that $N$ is solvable or every non-solvable chief factor $H/K$ of $G$ satisfying $H\leq N$ is isomorphic to $PSL_2(3^f)$ with $f$ a 2-power. This partially answers the question proposed by Lewis in 2023, asking whether $G\cong M_{10}$? Furthermore, we prove that if each element $x\in G\backslash N$ has prime power order and ${\bf C}_G(x)$ is maximal in $G$, then $N$ is solvable. Relying on this, we give the structure of group $G$ with normal subgroup $N$ such that ${\bf C}_G(x)$ is maximal in $G$ for any element $x\in G\setminus N$. Finally, we investigate the structure of a normal subgroup $N$ when the centralizer ${\bf C}_G(x)$ is maximal in $G$ for any element $x\in N\setminus {\bf Z}(N)$, which is a generalization of results of Zhao, Chen, and Guo in 2020, investigating a special case that $N=G$ for our main result. We also provide a new proof for Zhao, Chen, and Guo's results above.

Information

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aschbacher, M. and Seitz, G. M.. Involutions in Chevalley groups over fields of even order. Nagoya Math. J. 63 (1976), 191.10.1017/S0027763000017438CrossRefGoogle Scholar
Ashrafi, A. R.. On finite groups with a given number of centralizers. Algebra Colloq. 7 (2000), 139146.10.1007/s10011-000-0139-5CrossRefGoogle Scholar
Bryce, R. A.. The subgroups of Baer and Hughes. Arch. Math. (Basel) 61 (1993), 305312.10.1007/BF01201445CrossRefGoogle Scholar
Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.. Atlas of Finite Groups (London: Oxford University Press, 1985).Google Scholar
Espuelas, A.. The Fitting length of the Hughes subgroup. J. Algebra 105 (1987), 365371.10.1016/0021-8693(87)90201-8CrossRefGoogle Scholar
Feit, W., Hall, M. and Thompson, J. G.. Finite groups in which the centralizer of any non-identity element is nilpotent. Math. Z. (1960), 117.10.1007/BF01180468CrossRefGoogle Scholar
Giudici, M., Maximal subgroups of almost simple groups with socle $PSL(2,\,q)$, eprint, arXiv:math/0703685.Google Scholar
Gorenstein, D. and Lyons, R.. The local structure of finite groups of characteristic 2 type. Mem. Am. Math. Soc. 42 (1983), vii+731.Google Scholar
Gorenstein, D., Lyons, R. and Solomon, R., The Classification of the Finite Simple Groups. Number 3. Part I. Chapter A. Mathematical Surveys and Monographs, Vol. 40.3 (American Mathematical Society, Providence, RI, 1998).10.1090/surv/040.3CrossRefGoogle Scholar
Grechkoseeva, M. A.. On the spectra of almost simple groups with a symplectic or orthogonal socle. Sib. Math. J. 57 (2016), 582588.10.1134/S0037446616040029CrossRefGoogle Scholar
Grechkoseeva, M. A.. On orders of elements of finite almost simple groups with linear or unitary socle. J. Group Theory 20 (2017), 11911222.10.1515/jgth-2017-0010CrossRefGoogle Scholar
Grechkoseeva, M. A.. On spectra of almost simple extensions of even-dimensional orthogonal groups. Sib. Math. J. 59 (2018), 623640.10.1134/S0037446618040055CrossRefGoogle Scholar
Harris, M. E.. Finite groups containing an intrinsic 2-component of Chevalley type over a field of odd order. Trans. Am. Math. Soc. 272 (1982), 165.Google Scholar
Hughes, D. R. and Thompson, J. G.. The $H_p$-problem and the structure of $H_p$-groups. Pacific J. Math. 9 (1959), 10971101.10.2140/pjm.1959.9.1097CrossRefGoogle Scholar
Heineken, H.. On groups all of whose elements have prime power order. Math. Proc. R. Ir. Acad. 106A (2006), 191198.10.1353/mpr.2006.0003CrossRefGoogle Scholar
Higman, G.. Finite groups in which every element has prime order. J. London Math. Soc. 32 (1957), 335342.10.1112/jlms/s1-32.3.335CrossRefGoogle Scholar
Huppert, B.. Endliche Gruppen I (Berlin-Heidelberg-New York: Springer-Verlag, 1967).10.1007/978-3-642-64981-3CrossRefGoogle Scholar
Jararian Amiri, S. M., Amiri, M. and Rostami, H.. Finite groups determined by the number of element centralizers. Commun. Algebra 45 (2017), 37923797.10.1080/00927872.2016.1246664CrossRefGoogle Scholar
Kurzweil, H. and Stellmacher, B.. The Theory of Finite Groups An introduction (Berlin-Heidelberg-New York: Springer-Verlag, 2004).10.1007/b97433CrossRefGoogle Scholar
Lewis, M. L.. Groups having all elements off a normal subgroup with prime power order. Vietnam J. Math. 51 (2023), 577587.10.1007/s10013-022-00591-2CrossRefGoogle Scholar
Li, C. H. and Wang, L.. Finite REA-groups are solvable. J. Algebra 522 (2019), 195217.10.1016/j.jalgebra.2018.11.033CrossRefGoogle Scholar
Moghaddamfar, A. R. and Shi, W. J.. The number of finite groups whose element orders is given. Contrib. Algebra Geom. 47 (2006), 463479.Google Scholar
Rose, J. S.. On finite insoluble groups with nilpotent maximal subgroups. J. Algebra 48 (1977), 182196.10.1016/0021-8693(77)90301-5CrossRefGoogle Scholar
Shao, C. G. and Jiang, Q. H.. Structure of finite groups with four conjugacy class sizes of certain elements. Commun. Algebra 46 (2018), 14841491.10.1080/00927872.2017.1347660CrossRefGoogle Scholar
Suzuki, M.. Finite groups with nilpotent centralizers. Trans. Am. Math. Soc. 99 (1961), 425470.10.1090/S0002-9947-1961-0131459-5CrossRefGoogle Scholar
Zhao, X. H., Chen, R. F. and Guo, X. Y.. Groups in which the centralizer of any non-central elements is maximal. J. Group Theory 23 (2020), 871878.10.1515/jgth-2019-0150CrossRefGoogle Scholar
Zhao, X. H., Zhou, Y. Y., Chen, R. F., Zuo, H. L. and Huang, Q.. On the normal subgroup with minimal $G$-conjugacy class sizes. Mediterr. J. Math. 18 (2021), 266.10.1007/s00009-021-01889-0CrossRefGoogle Scholar
Zhurtov, A. Kh., Lytkina, D. V. and Mazurov, V. D.. Primary cosets in groups. Algebra Logic 59 (2020), 216221.10.1007/s10469-020-09593-wCrossRefGoogle Scholar
Zsigmondy, K.. Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265284.10.1007/BF01692444CrossRefGoogle Scholar
Zvezdina, M. A.. On the spectra of automorphic extensions of finite simple exceptional groups of Lie type. Algebra Logic 55 (2016), 354366.10.1007/s10469-016-9407-4CrossRefGoogle Scholar