Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-10-12T12:42:02.541Z Has data issue: false hasContentIssue false

Quantitative quasi-invariance of Gaussian measures below the energy level for the 1D generalized nonlinear Schrödinger equation and application to global well-posedness

Published online by Cambridge University Press:  08 October 2025

Alexis Knezevitch*
Affiliation:
UMPA UMR 5669 CNRS, ENS Lyon, Unités de mathématiques pures et appliquées, 46, allée d’Italie, France (alexis.knezevitch@ens-lyon.fr)
*
*Corresponding author.

Abstract

We consider the Schrödinger equation on the one dimensional torus with a general odd-power nonlinearity $p \geq 5$, which is known to be globally well-posed in the Sobolev space $H^\sigma(\mathbb{T})$, for every $\sigma \geq 1$, thanks to the conservation and finiteness of the energy. For regularities σ < 1, where this energy is infinite, we explore a globalization argument adapted to random initial data distributed according to the Gaussian measures µs, with covariance operator $(1-\Delta)^s$, for s in a range $(s_p,\frac{3}{2}]$. We combine a deterministic local Cauchy theory with the quasi-invariance of Gaussian measures µs, with additional Lq-bounds on the Radon-Nikodym derivatives, to prove that the Gaussian initial data generate almost surely global solutions. These Lq-bounds are obtained with respect to Gaussian measures accompanied by a cutoff on a renormalization of the energy; the main tools to prove them are the Boué-Dupuis variational formula and a Poincaré-Dulac normal form reduction. This approach is similar in spirit to Bourgain’s invariant argument [7] and to arecent work by Forlano-Tolomeo in [18].

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Üstünel, A. S.. Variational calculation of Laplace transforms via entropy on Wiener space and applications. J. Funct. Anal. 267 (2014), 30583083.Google Scholar
Barashkov, N. and Gubinelli, M.. A variational method for $\Phi^4_3$ Duke Math. J. 169 (2020), 33393415.10.1215/00127094-2020-0029CrossRefGoogle Scholar
Bernier, J., Grébert, B., Robert, T.. Dynamics of quintic nonlinear Schrödinger equations in ${H}^{2/5+}(\mathbb{T})$, arXiv preprint arXiv:2305.05236, (2023).Google Scholar
Bogachev, V.. Gaussian Measures, Mathematical Surveys and Monographs. (American Mathematical Society, 1998).10.1090/surv/062CrossRefGoogle Scholar
Boué, M. and Dupuis, P.. A variational representation for certain functionals of Brownian motion. Ann. Probab. 26 (1998), 16411659.10.1214/aop/1022855876CrossRefGoogle Scholar
Bourgain, J.. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3 (1993), 107156.10.1007/BF01896020CrossRefGoogle Scholar
Bourgain, J.. Periodic nonlinear Schrödinger equation and invariant measures. Comm. Math. Phys. 166 (1994), 126.10.1007/BF02099299CrossRefGoogle Scholar
Bourgain, J.. On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE. Internat. Math. Res. Notices 6. (1996), 277304.10.1155/S1073792896000207CrossRefGoogle Scholar
Bourgain, J.. A remark on normal forms and the “I-method” for periodic NLS. J. Anal. Math. 94 (2004), 125157.10.1007/BF02789044CrossRefGoogle Scholar
Bourgain, J. and Demeter, C.. The proof of the l2 decoupling conjecture. Ann. of Math. 2), 182 (2015), 351389 (.10.4007/annals.2015.182.1.9CrossRefGoogle Scholar
Coe, J. Tolomeo, L.. Sharp quasi-invariance threshold for the cubic Szegö equation, arXiv preprint arXiv:2404.14950, (2024).Google Scholar
Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T.. Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. Math. Res. Lett. 9 (2002), 659682.10.4310/MRL.2002.v9.n5.a9CrossRefGoogle Scholar
Colliander, J., Kwon, S. and Oh, T.. A remark on normal forms and the “upside-down” I-method for periodic NLS: growth of higher Sobolev norms. J. Anal. Math. 118 (2012), 5582.10.1007/s11854-012-0029-zCrossRefGoogle Scholar
Debussche, A. and Tsutsumi, Y.. Quasi-invariance of Gaussian measures transported by the cubic NLS with third-order dispersion on $\mathbb{T}$. J. Funct. Anal. 281 (2021), 109032, 23.10.1016/j.jfa.2021.109032CrossRefGoogle Scholar
Erdoğan, M. B. and Tzirakis, N.. Wellposedness and applications. In Dispersive Partial Differential equations, Vol.86, (Cambridge University Press, Cambridge, 2016) vol. of London Mathematical Society Student Texts.10.1017/CBO9781316563267CrossRefGoogle Scholar
Forlano, J.. Improved quasi-invariance result for the periodic Benjamin-Ono-BBM equation, arXiv preprint arXiv:2501.17180, (2025).Google Scholar
Forlano, J. and Seong, K.. Transport of Gaussian measures under the flow of one-dimensional fractional nonlinear Schrödinger equations. Comm. Partial Differential Equations. 47 (2022), 12961337.Google Scholar
Forlano, J. Tolomeo, L., Quasi-invariance of Gaussian measures of negative regularity for fractional nonlinear Schrödinger odinger equations, arXiv preprint arXiv:2205.11453, (2022).Google Scholar
Forlano, J. and Trenberth, W. J.. On the transport of Gaussian measures under the one-dimensional fractional nonlinear Schrödinger equations. Ann. Inst. H. Poincaré C Anal. Non LinéAire. 36 (2019), 19872025.10.1016/j.anihpc.2019.07.006CrossRefGoogle Scholar
Genovese, G., Lucà, R. and Tzvetkov, N.. Transport of Gaussian measures with exponential cut-off for Hamiltonian PDEs. J. Anal. Math. 150 (2023), 737787.Google Scholar
Höfer, F. Nikov, N. A.. On growth of Sobolev norms for periodic nonlinear Schrödinger and generalised Korteweg-de Vries equations under critical Gibbs dynamics, arXiv preprint arXiv:2412.08630, (2024).Google Scholar
Knezevitch, A.. Qualitative quasi-invariance of low regularity Gaussian measures for the 1d quintic nonlinear Schrödinger equation, arXiv preprint arXiv:2502.17094, (2025).10.1007/s00030-025-01049-3CrossRefGoogle Scholar
Knezevitch, A.. Transport of low regularity Gaussian measures for the 1d quintic nonlinear Schrödinger equation. NoDEA Nonlinear Differential Equations Appl. 32 (2025), 45.10.1007/s00030-025-01049-3CrossRefGoogle Scholar
Kuo, H. -H., Gaussian Measures in Banach Spaces, Vol. 463, Lecture Notes in Mathematics, Berlin-New York, Springer-Verlag , (1975), .10.1007/BFb0082007CrossRefGoogle Scholar
Li, Y., Wu, Y. and Xu, G.. Global well-posedness for the mass-critical nonlinear Schrödinger equation on $\mathbb{T}$. J. Differential Equations. 250 (2011), 27152736.10.1016/j.jde.2011.01.025CrossRefGoogle Scholar
Oh, T. and Seong, K.. Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation in negative Sobolev spaces. J. Funct. Anal. 281 (2021), 109150, 49.10.1016/j.jfa.2021.109150CrossRefGoogle Scholar
Oh, T., Sosoe, P. and Tzvetkov, N.. An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation. J. Éc. polytech. Math. 5 (2018), 793841.10.5802/jep.83CrossRefGoogle Scholar
Oh, T. and Tzvetkov, N.. Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation. Probab. Theory Related Fields. 169 (2017), 11211168.Google ScholarPubMed
Planchon, F., Tzvetkov, N. and Visciglia, N.. Modified energies for the periodic generalized KdV equation and applications. Ann. Inst. H. Poincaré C Anal. Non LinéAire. 40 (2023), 863917.10.4171/aihpc/62CrossRefGoogle Scholar
Schippa, R.. Improved global well-posedness for mass-critical nonlinear Schrödinger equations on tori. J. Differential Equations. 412 (2024), 87139.10.1016/j.jde.2024.08.022CrossRefGoogle Scholar
Simon, B.. The $P(\unicode{x03D5})_{2}$ Euclidean (quantum) field theory. In Princeton Series in Physics, (Princeton University Press, Princeton, NJ, 1974).Google Scholar
Sohinger, V.. Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on S1. Differential Integral Equations. 24 (2011), 653718.10.57262/die/1356628828CrossRefGoogle Scholar
Staffilani, G.. On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations. Duke Math. J. 86 (1997), 109142.10.1215/S0012-7094-97-08604-XCrossRefGoogle Scholar
Sun, C. Tzvetkov, N.. Quasi-invariance of Gaussian measures for the 3d energy critical nonlinear Schrödinger odinger equation, arXiv preprint arXiv:2308.12758, (2023).Google Scholar
Tao, T.. Local and global analysis. In Nonlinear Dispersive equations, Vol. 106, of CBMS Regional Conference Series in Mathematics, conference board of the mathematical sciences, Washington, DC (Providence, RI: American Mathematical Society, 2006)10.1090/cbms/106CrossRefGoogle Scholar
Thomann, L. and Tzvetkov, N.. Gibbs measure for the periodic derivative nonlinear Schrödinger equation. Nonlinearity. 23 (2010), 27712791.10.1088/0951-7715/23/11/003CrossRefGoogle Scholar
Tzvetkov, N.. Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation. Probab. Theory Related Fields. 146 (2010), 481514.10.1007/s00440-008-0197-zCrossRefGoogle Scholar
Tzvetkov, N.. Quasiinvariant Gaussian measures for one-dimensional Hamiltonian partial differential equations. Forum Math. Sigma. 3 (2015), e28, 35.10.1017/fms.2015.27CrossRefGoogle Scholar
Tzvetkov, N. and Visciglia, N.. Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. Ann. Sci. Éc. Norm. Supér. (4). 46 (2013), 249299.10.24033/asens.2189CrossRefGoogle Scholar