Hostname: page-component-54dcc4c588-64p75 Total loading time: 0 Render date: 2025-10-06T11:49:38.422Z Has data issue: false hasContentIssue false

Index estimates of compact hypersurfaces in smooth metric measure spaces

Published online by Cambridge University Press:  07 March 2024

Márcio Batista
Affiliation:
CPMAT-IM, Universidade Federal de Alagoas, Maceió, AL 57072-970, Brazil (mhbs@mat.ufal.br; matheus.martins@im.ufal.br)
Matheus B. Martins
Affiliation:
CPMAT-IM, Universidade Federal de Alagoas, Maceió, AL 57072-970, Brazil (mhbs@mat.ufal.br; matheus.martins@im.ufal.br)

Abstract

In this article, we investigate the spectra of the stability and Hodge–Laplacian operators on a compact manifold immersed as a hypersurface in a smooth metric measure space, possibly with singularities. Using ideas developed by A. Ros and A. Savo, along with an ingenious computation, we have obtained a comparison between the spectra of these operators. As a byproduct of this technique, we have deduced an estimate of the Morse index of such hypersurfaces.

Information

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adauto, D. and Batista, M.. Spectrum comparison on free boundary minimal submanifolds of Euclidean domains. Math. Nachrichten 296 (2023), 46734685.10.1002/mana.202200142CrossRefGoogle Scholar
Aiex, N. S.. Index estimate of self-shrinkers in $\Bbb {R}^3$ with asymptotically conical ends. Proc. Am. Math. Soc. 147 (2019), 799809.10.1090/proc/14306CrossRefGoogle Scholar
Aiex, N. S. and Hong, H.. Index estimates for surfaces with constant mean curvature in 3-dimensional manifolds. Calc. Var. Partial Differ. Equ. 60 (2021), 3.10.1007/s00526-020-01855-wCrossRefGoogle Scholar
Ambrozio, L., Carlotto, A. and Sharp, B.. Comparing the Morse index and the first Betti number of minimal hypersurfaces. J. Differ. Geom. 108 (2018a), 379410.10.4310/jdg/1519959621CrossRefGoogle Scholar
Ambrozio, L., Carlotto, A. and Sharp, B.. Index estimates for free boundary minimal hypersurfaces. Math. Ann. 370 (2018b), 10631078.10.1007/s00208-017-1549-8CrossRefGoogle Scholar
Bueler, E. L.. The heat kernel weighted Hodge Laplacian on noncompact manifolds. Trans. Am. Math. Soc. 351 (1999), 683713.10.1090/S0002-9947-99-02021-8CrossRefGoogle Scholar
Castro, K. and Rosales, C.. Free boundary stable hypersurfaces in manifolds with density and rigidity results. J. Geom. Phys. 79 (2014), 1428.10.1016/j.geomphys.2014.01.013CrossRefGoogle Scholar
Cavalcante, M. P. and de Oliveira, D. F.. Index estimates for free boundary constant mean curvature surfaces. Pac. J. Math. 305 (2020a), 153163.10.2140/pjm.2020.305.153CrossRefGoogle Scholar
Cavalcante, M. P. and de Oliveira, D. F.. Lower bounds for the index of compact constant mean curvature surfaces in $\Bbb R^3$ and $\Bbb S^3$. Rev. Mat. Iberoam. 36 (2020b), 195206.10.4171/rmi/1125CrossRefGoogle Scholar
Hong, H. and Saturnino, A. B.. Capillary surfaces: stability, index and curvature estimates. J. Reine Angew. Math. (Crelles J.) 2023 (2023), 233265.Google Scholar
Impera, D., Rimoldi, M. and Savo, A.. Index and first Betti number of $f$-minimal hypersurfaces and self-shrinkers. Rev. Mat. Iberoam. 36 (2020), 817840.10.4171/rmi/1150CrossRefGoogle Scholar
Morgan, F. and Ritoré, M.. Isoperimetric regions in cones. Trans. Am. Math. Soc. 354 (2002), 23272339.10.1090/S0002-9947-02-02983-5CrossRefGoogle Scholar
Palmer, B.. Index and stability of harmonic gauss maps. Math. Z. 206 (1991), 563566.10.1007/BF02571363CrossRefGoogle Scholar
Ros, A.. One-sided complete stable minimal surfaces. J. Differ. Geom. 74 (2006), 6992.10.4310/jdg/1175266182CrossRefGoogle Scholar
Sargent, P.. Index bounds for free boundary minimal surfaces of convex bodies. Proc. Am. Math. Soc. 145 (2017), 24672480.10.1090/proc/13442CrossRefGoogle Scholar
Savo, A.. Index bounds for minimal hypersurfaces of the sphere. Indiana Univ. Math. J. 59 (2010), 823837.10.1512/iumj.2010.59.4013CrossRefGoogle Scholar
Yano, K. (1970) Integral Formulas in Riemannian Geometry. Lecture notes in pure and applied mathematics (Marcel Dekker Inc.).Google Scholar
Zhou, X.. Min-max hypersurface in manifold of positive Ricci curvature. J. Differ. Geom. 105 (2017), 291343.10.4310/jdg/1486522816CrossRefGoogle Scholar
Zhu, J. J.. First stability eigenvalue of singular minimal hypersurfaces in spheres. Calc. Var. Partial Differ. Equ. 57 (2018), 130.10.1007/s00526-018-1417-8CrossRefGoogle Scholar