Hostname: page-component-cb9f654ff-rkzlw Total loading time: 0 Render date: 2025-08-22T04:41:13.196Z Has data issue: false hasContentIssue false

Liouville theorems for the sub-linear Lane–Emden equation on the half space

Published online by Cambridge University Press:  18 November 2024

Huxiao Luo*
Affiliation:
Department of Mathematics, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang 321004, P. R. China School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China (luohuxiao@zjnu.edu.cn)

Abstract

In this article, we study the following Dirichlet problem to the sub-linear Lane–Emden equation

\begin{equation*}\left\{\begin{array}{ll}-\Delta u=u^{p},\quad u(x)\geq0,\quad x\in\mathbb{R}^n_+, \\u(x)\equiv0,\quad x\in\partial\mathbb{R}^n_+,\end{array}\right.\end{equation*}

where $n\geq3$, $0 \lt p\leq1$. By establishing an equivalent integral equation, we give a lower bound of the Kelvin transformation $\bar{u}$. Then, by constructing a new comparison function, we apply the maximum principle based on comparisons and the method of moving planes to obtain that u only depends on xn. Based on this, we prove the non-existence of non-negative solutions.

Information

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ancona, A.. Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien. Ann. Inst. Fourier 28 (1978), 169213.Google Scholar
Bass, R. F. and Burdzy, K.. A probabilistic proof of the boundary Harnack principle. In Seminar on stochastic processes, (Birkhäuser, Boston, 1990).Google Scholar
Chen, W., Fang, Y. and Yang, R.. Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 274 (2015), 167198.CrossRefGoogle Scholar
Chen, W., and Li, C.. Maximum principles and the method of moving planes. In Textbook in Chinese 165 (2009).Google Scholar
Chen, Z., Lin, C.-S. and Zou, W.. Monotonicity and nonexistence results to cooperative systems in the half space. J. Funct. Anal. 266 (2014), 10881105.CrossRefGoogle Scholar
Dupaigne, L., Farina, A. and Petitt, T.. Liouville-type theorems for the Lane–Emden equation in the half-space and cones. J. Funct. Anal. 284 (2023), .CrossRefGoogle Scholar
Dupaigne, L., Sirakov, B. and Souplet, P.. A Liouville-type theorem for the Lane–Emden equation in a half-space. Int. Math. Res. Not. 12 (2022), 90249043.CrossRefGoogle Scholar
Evans, L. C.. Partial differential equations, 2nd ed. (American Mathematical Society, Rhode Island, 2010).Google Scholar
Fang, Y. and Chen, W.. A Liouville type theorem for poly-harmonic Dirichlet problems in a half space. Adv. Math. 229 (2012), 28352867.CrossRefGoogle Scholar
Gidas, B. and Spruck, J.. A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differ. Equ. 6 (1981), 883901.CrossRefGoogle Scholar
Gidas, B. and Spruck, J.. Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34 (1981), 525598.CrossRefGoogle Scholar
Gilbarg, D. and Trudinger, N. S.. Elliptic partial differential equations of second order, Classics in Mathematics (Springer, Berlin, 2001). Reprint of the 1998 edition.CrossRefGoogle Scholar
Montoro, L., Muglia, L. and Sciunzi, B.. Classification of solutions to $-\Delta u=u^{-\unicode{x03B3}}$ in the half-space. Math. Ann. (3) 389 (2024), 31633179CrossRefGoogle Scholar
Montoro, L., Muglia, L. and Sciunzi, B.. The classification of all weak solutions to $-\Delta u=u^{-\unicode{x03B3}}$ in the half-space. arXiv:2404.03343v1.Google Scholar