We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Information
Type
Symposium on ‘The digestive tract in nutritional adaptation’
Boller, K., Arpin, M., Pringault, E., Mangeat, P. & Reggio, H. (1988). Differential distribution of villin and villin mRNA in mouse intestinal epithelial cells. Differentiation39, 51–57.CrossRefGoogle ScholarPubMed
Brown, A. L. J. (1962). Microvilli of the human jejunal epithelial cells. Journal of Cell Biology12, 623–627.CrossRefGoogle Scholar
Cheeseman, C. I. (1986). Expression of amino acid and peptide transport systems in rat small intestine. American Journal of Physiology251, G636–G641.Google ScholarPubMed
Collins, A. J., James, P. S. & Smith, M. W. (1989). Sugar-dependent selective induction of mouse jejunal disaccharidase activities. Journal of Physiology419, 157–167.CrossRefGoogle ScholarPubMed
Cremaschi, D., James, P. S., Meyer, G., Rossetti, C. & Smith, M. W. (1986). Intracellular potassium as a possible inducer of amino acid transport across hamster jejunal enterocytes. Journal of Physiology375, 107–119.CrossRefGoogle ScholarPubMed
Dupret, J. M., Brun, P., Perret, C., Lumri, N., Thomasset, M. & Cuisinier-Gleizes, P. (1987). Transcriptional and post-translational regulation of vitamin-D-dependent calcium binding protein gene expression in the rat duodenum by 1,25-dihydroxycholecalciferol. Journal of Biological Chemistry262, 16553–16557.CrossRefGoogle Scholar
Freeman, T. C., Tivey, D. R. & Collins, A. C. (1992). Expression of lactase mRNA in rabbit small intestine. Gut33, Suppl., S35.Google Scholar
Freiburghaus, A. U., Schmitz, J., Shindler, M., Rotthauwe, H. W., Kuitunen, P., Launiala, K. & Hadorn, B. (1976). Protein patterns of brush-border fragments in congenital lactose malabsorption and in specific hypolactasia in the adult. New England Journal of Medicine294, 1030–1032.CrossRefGoogle ScholarPubMed
Haase, W., Heitmann, K., Friese, W., Ollig, D. & Koepsell, H. (1990). Characterization and histochemical localization of the rat intestinal Na+-D-glucose cotransporter by monoclonal antibodies. European Journal of Cell Biology52, 297–309.Google ScholarPubMed
Haffen, K., Kedinger, M. & Simon-Assmann, P. (1989). Cell contact dependent regulation of enterocyte differentiation. In Human Gastrointestinal Development, pp. 19–39 [Lebenthal, E., editor]. New York: Raven Press.Google Scholar
Hauft, S. M., Kim, S. H., Schmidt, G. H., Pease, S., Rees, S., Harris, S., Roth, K. A., Hansbrough, J. R., Cohn, S. M., Ahnen, D. J., Wright, N. A., Goodlad, R. A. & Gordon, J. I. (1992). Expression of SV-40T antigen in the small intestinal epithelium of transgenic mice results in proliferative changes in the crypt and re-entry of villus-associated enterocytes into the cell cycle but has no apparent effect on cellular differentiation programs and does not cause neoplastic transformation. Journal of Cell Biology117, 825–839.CrossRefGoogle Scholar
Iseki, S. & Kondo, H. (1990). Light microscopic localization of hepatic fatty acid binding protein mRNA in jejunal epithelia of rats using in situ hybridization, immunochemical and autoradiographic techniques. Journal of Histochemistry and Cytochemistry38, 111–115.CrossRefGoogle Scholar
Kedinger, M., Simon, P. M., Grenier, J. F. & Haffen, K. (1981). Role of epithelial-mesenchymal interactions in the ontogenesis of intestinal brush-border enzymes. Developmental Biology86, 339–347.CrossRefGoogle ScholarPubMed
King, I. S., Paterson, J. Y. F., Peacock, M. A., Smith, M. W. & Syme, G. (1983). Effect of diet upon enterocyte differentiation in the rat jejunum. Journal of Physiology344, 465–481.CrossRefGoogle ScholarPubMed
Kinter, W. B. & Wilson, T. H. (1965). Autoradiographic study of sugar and amino acid absorption by everted sacs of hamster intestine. Journal of Cell Biology25, 19–39.CrossRefGoogle ScholarPubMed
Kiyama, H., Wu, J. C. Y., Smith, M. W., Lawson, E. D. M. & Emson, P. C. (1991). Developmental control over vitamin-D-induced calbindin gene expression during early differentiation of chicken enterocytes. Differentiation46, 69–73.CrossRefGoogle Scholar
Leblond, C. P. (1965). The time dimension in histology. American Journal of Anatomy116, 1–28.CrossRefGoogle ScholarPubMed
Mayel-Afshar, S., Lane, S. M. & Lawson, D. E. M. (1988). Relationship between the levels of calbindin synthesis and calbindin mRNA in chick intestine. Journal of Biological Chemistry263, 4355–4361.CrossRefGoogle ScholarPubMed
Menge, H., Sepúlveda, F. V. & Smith, M. W. (1983). Cellular adaptation of amino acid transport following intestinal resection in the rat. Journal of Physiology334, 213–223.CrossRefGoogle ScholarPubMed
Milne, M. D. (1974). Hereditary disorders of intestinal transport. In Intestinal Absorption, vol. 4B, pp. 961–1013 [Smyth, D. H. editor]. London: Plenum Press.CrossRefGoogle Scholar
Nordström, C., Dahlqvist, A. & Josefsson, L. (1968). Quantitative determination of enzymes in different parts of the villi and crypts of rat small intestine. Comparisons of alkaline phosphatase, disaccharidases and dipeptidases. Journal of Histochemistry and Cytochemistry15, 713–721.CrossRefGoogle Scholar
Norén, O., Dabelsteen, E., Høyer, P. E., Olsen, J., Sjöström, H. & Hansen, G. H. (1989). Onset of transcription of the aminopeptidase N (leucemia antigen CD13) gene at the crypt/villus transition zone during rabbit enterocyte differentiation. FEBS Letters259, 107–112.CrossRefGoogle Scholar
Norman, A. W., Friedlander, E. J. & Henry, H. L. (1981). Determination of the rates of synthesis and degradation of vitamin D-dependent chick intestinal and renal calcium-binding proteins. Archives of Biochemistry and Biophysics206, 305–317.CrossRefGoogle ScholarPubMed
Phillips, A. D. & Schmitz, J. (1992). Familial microvillous atrophy: A clinicopathological survey of 23 cases. Journal of Pediatric Gastroenterology and Nutrition14, 380–396.CrossRefGoogle ScholarPubMed
Savidge, T. C., Smith, M. W., James, P. S. & Aldred, P. (1991). Salmonella-induced M-cell formation in germ-free mouse Peyer's patch tissue. American Journal of Pathology139, 177–184.Google ScholarPubMed
Siebert, P., Hunziker, W. & Norman, A. W. (1982). Cell-free translation analysis of the vitamin D-dependent calcium binding protein mRNA activity present in total RNA and polysomal extracts from chick intestine. Archives of Biochemistry and Biophysics219, 286–296.CrossRefGoogle ScholarPubMed
Smith, M. W. (1991). Cell biology and molecular genetics of enterocyte differentiation. Current Topics in Membrane Transport39, 153–179.CrossRefGoogle Scholar
Smith, M. W. (1992). Diet effects on enterocyte development. Proceedings of the Nutrition Society51, 173–179.CrossRefGoogle ScholarPubMed
Smith, M. W. & Brown, D. (1989). Dual control over microvillus elongation during enterocyte development. Comparative Biochemistry and Physiology93A, 623–628.CrossRefGoogle Scholar
Smith, M. W., Paterson, J. Y. F. & Peacock, M. A. (1984). A comprehensive description of brush border membrane development applying to enterocytes taken from a wide variety of mammalian species. Comparative Biochemistry and Physiology77A, 655–662.CrossRefGoogle Scholar
Smith, M. W., Turvey, A. & Freeman, T. C. (1992). Appearance of phloridzin-sensitive glucose transport is not controlled at mRNA level in rabbit jejunal enterocytes. Experimental Physiology77, 525–528.CrossRefGoogle Scholar
Spencer, R., Charman, M. & Lawson, D. E. M. (1978). Stimulation of intestinal calcium-binding-protein mRNA synthesis in the nucleus of vitamin D-deficient chicks by 1,25-dihydroxycholecalciferol. Biochemical Journal175, 1089–1094.CrossRefGoogle Scholar
Stirling, C. E. & Kinter, W. B. (1967). High-resolution radioautography of galactose-3H accumulation in rings of hamster intestine. Journal of Cell Biology35, 585–604.CrossRefGoogle ScholarPubMed
Takata, K., Kasahara, T., Kasahara, M., Ezaki, O. & Hirano, H. (1992). Immunohistochemical localization of Na+-dependent glucose transporter in rat jejunum. Cell and Tissue Research267, 3–9.CrossRefGoogle ScholarPubMed
Theofan, G., Nguyen, A. P. & Norman, A. W. (1986). Regulation of calbindin-D28k gene expression by 1,25-dihydroxyvitamin D3 is correlated to receptor occupancy. Journal of Biological Chemistry261, 16943–16947.CrossRefGoogle ScholarPubMed
Traber, P. G. (1990). Regulation of sucrase-isomaltase gene expression along the crypt-villus axis of rat small intestine. Biochemical and Biophysical Research Communications173, 765–773.CrossRefGoogle ScholarPubMed
Weiser, M. M. (1973). Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. Journal of Biological Chemistry248, 2536–2541.CrossRefGoogle ScholarPubMed
Wu, J. C. Y., Smith, M. W. & Lawson, D. E. M. (1992). Time dependency of 1,25(OH)2D3 induction of calbindin mRNA and calbindin expression in chick enterocytes during their differentiation along the crypt-villus axis. Differentiation51, 195–200.CrossRefGoogle ScholarPubMed
Wu, J. C. Y., Smith, M. W., Mitchell, M. A., Peacock, M. A., Turvey, A. & Keable, S. J. (1993). Enterocyte expression of calbindin, calbindin mRNA and calcium transport increases in jejunal tissue during onset of egg production in the fowl (Gallus domesticus). Comparative Biochemistry and Physiology (In the Press).CrossRefGoogle ScholarPubMed