Hostname: page-component-54dcc4c588-trf7k Total loading time: 0 Render date: 2025-10-06T10:43:28.919Z Has data issue: false hasContentIssue false

Using adaptive-optics assisted MUSE observations to measure galaxy distances with the Planetary Nebula luminosity function

Published online by Cambridge University Press:  06 October 2025

Saskia Schlagenhauf*
Affiliation:
Armagh Observatory and Planetarium, UK Queen’s University Belfast, UK
Marc Sarzi
Affiliation:
Armagh Observatory and Planetarium, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thanks to its characteristic bright cut-off, the planetary nebulae luminosity function (PNLF) has now become a well-established extragalactic distance indicator that is in principle applicable to all types of galaxies. Most recently, several studies have demonstrated how the use of integral-field spectroscopy can lead to even more precise PNLF measurements, in particular as it allows to probe the central regions of galaxies and obtain well-sampled PNLF distributions. In this respect, adaptive optics (AO) is expected to further increase the scope and reach of PNLF measurements, as it should allow for the detection of even more and more distant PNe. This proceeding presents first results of the investigation of the MUSE-AO performance in relation to the detection of PNe in external galaxies, based on all galaxies with wide-field mode AO observations in the ESO archive.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Arnaboldi, M. & Gerhard, O. 2022, Kinematics of the diffuse intragroup/intracluster light in groups and clusters of galaxies in the Local Universe (within 100 Mpc distance). Frontiers in Astronomy and Space Sciences, 9, 403.CrossRefGoogle Scholar
Bertin, E. & Arnouts, S. 1996, Sextractor: Software for source extraction. Astron. Astrophys. Suppl. Ser., 117(2), 393404.CrossRefGoogle Scholar
Cappellari, M. & Emsellem, E. 2004, Parametric Recovery of Line-of-Sight Velocity Distributions from Absorption-Line Spectra of Galaxies via Penalized Likelihood. PASP, 116(816), 138147.Google Scholar
Ciardullo, R., Jacoby, G. H., & Ford, H. C. 1989, Planetary Nebulae as Standard Candles. IV. A Test in the Leo I Group. APJ, 344, 715.Google Scholar
de Vaucouleurs, G. & Olson, D. W. 1984, A comparison of distance scales for early-type galaxies. APJS, 56, 91104.CrossRefGoogle Scholar
Fusco, T., Bacon, R., Kamann, S., Conseil, S., Neichel, B., Correia, C., Beltramo-Martin, O., Vernet, J., Kolb, J., & Madec, P. Y. 2020, Reconstruction of the ground-layer adaptive-optics point spread function for MUSE wide field mode observations. AAP, 635, A208.CrossRefGoogle Scholar
Guérou, A., Krajnović, D., Epinat, B., Contini, T., Emsellem, E., Bouché, N., Bacon, R., Michel-Dansac, L., Richard, J., Weilbacher, P. M., Schaye, J., Marino, R. A., den Brok, M., & Erroz-Ferrer, S. 2017, The MUSE Hubble Ultra Deep Field Survey. V. Spatially resolved stellar kinematics of galaxies at redshift 0.2 z 0.8. AAP, 608, A5.Google Scholar
Jacoby, G. H. 1989, Planetary Nebulae as Standard Candles. I. Evolutionary Models. APJ, 339, 39.Google Scholar
Jacoby, G. H., Ciardullo, R., Roth, M. M., Arnaboldi, M., & Weilbacher, P. M. 2023, Towards Precision Cosmology With Improved PNLF Distances Using VLT-MUSE II. A Test Sample from Archival Data. arXiv e-prints, arXiv:2309.11603.Google Scholar
Moffat, A. F. J. 1969, A Theoretical Investigation of Focal Stellar Images in the Photographic Emulsion and Application to Photographic Photometry. AAP, 3, 455.Google Scholar
Pastorello, N., Sarzi, M., Cappellari, M., Emsellem, E., Mamon, G. A., Bacon, R., Davies, R. L., & de Zeeuw, P. T. 2013, The planetary nebulae population in the nuclear regions of M31: the SAURON view. MNRAS, 430(2), 12191229.CrossRefGoogle Scholar
Riess, A. G., Yuan, W., Macri, L. M., Scolnic, D., Brout, D., Casertano, S., Jones, D. O., Murakami, Y., Anand, G. S., Breuval, L., Brink, T. G., Filippenko, A. V., Hoffmann, S., Jha, S. W., D’arcy Kenworthy, W., Mackenty, J., Stahl, B. E., & Zheng, W. 2022, A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s-1 Mpc-1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. APJL, 934(1), L7.CrossRefGoogle Scholar
Roth, M. M., Jacoby, G. H., Ciardullo, R., Davis, B. D., Chase, O., & Weilbacher, P. M. 2021, Toward Precision Cosmology with Improved PNLF Distances Using VLT-MUSEI. Methodology and Tests. APJ, 916(1), 21.Google Scholar
Sarzi, M., Falcón-Barroso, J., Davies, R. L., Bacon, R., Bureau, M., Cappellari, M., de Zeeuw, P. T., Emsellem, E., Fathi, K., Krajnović, D., Kuntschner, H., McDermid, R. M., & Peletier, R. F. 2006, The SAURON project - V. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies. MNRAS, 366(4), 11511200.CrossRefGoogle Scholar
Sarzi, M., Mamon, G. A., Cappellari, M., Emsellem, E., Bacon, R., Davies, R. L., & de Zeeuw, P. T. 2011, The planetary nebulae population in the central regions of M32: the SAURON view. MNRAS, 415(3), 28322843.CrossRefGoogle Scholar
Schönberner, D., Jacob, R., Lehmann, H., Hildebrandt, G., Steffen, M., Zwanzig, A., Sandin, C., & Corradi, R. L. M. 2014, A hydrodynamical study of multiple-shell planetary nebulae. III. Expansion properties and internal kinematics: Theory versus observation. Astronomische Nachrichten, 335(4), 378408.CrossRefGoogle Scholar
Spriggs, T. W., Sarzi, M., Galán-de Anta, P. M., Napiwotzki, R., Viaene, S., Nedelchev, B., Coccato, L., Corsini, E. M., Fahrion, K., Falcón-Barroso, J., Gadotti, D. A., Iodice, E., Lyubenova, M., Martn-Navarro, I., McDermid, R. M., Morelli, L., Pinna, F., van de Ven, G., de Zeeuw, P. T., & Zhu, L. 2021, The Fornax3D project: Planetary nebulae catalogue and independent distance measurements to Fornax cluster galaxies. AAP, 653, A167.CrossRefGoogle Scholar
Spriggs, T. W., Sarzi, M., Napiwotzki, R., Galán-de Anta, P. M., Viaene, S., Nedelchev, B., Coccato, L., Corsini, E. M., de Zeeuw, P. T., Falcón-Barroso, J., Gadotti, D. A., Iodice, E., Lyubenova, M., Martn-Navarro, I., McDermid, R. M., Pinna, F., van de Ven, G., & Zhu, L. 2020, Fornax 3D project: Automated detection of planetary nebulae in the centres of early-type galaxies and first results. AAP, 637, A62.CrossRefGoogle Scholar
Tully, R. B., Courtois, H. M., Dolphin, A. E., Fisher, J. R., Héraudeau, P., Jacobs, B. A., Karachentsev, I. D., Makarov, D., Makarova, L., Mitronova, S., Rizzi, L., Shaya, E. J., Sorce, J. G., & Wu, P.-F. 2013, Cosmicflows-2: The Data. AJ, 146(4), 86.Google Scholar
Tully, R. B. & Fisher, J. R. 1988,. Catalog of Nearby Galaxies. Cambridge University Press.Google Scholar