Hostname: page-component-cb9f654ff-p5m67 Total loading time: 0 Render date: 2025-08-20T23:23:07.317Z Has data issue: false hasContentIssue false

A Survey of Close, Young Stars with SDI at the VLT and MMT

Published online by Cambridge University Press:  02 May 2006

Beth A. Biller
Affiliation:
Steward Observatory, University of Arizona, Tucson, AZ 85721 email: bbiller@as.arizona.edu
Laird M. Close
Affiliation:
Steward Observatory, University of Arizona, Tucson, AZ 85721 email: bbiller@as.arizona.edu
Elena Masciadri
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
Rainer Lenzen
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
Wolfgang Brandner
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
Donald McCarthy
Affiliation:
Steward Observatory, University of Arizona, Tucson, AZ 85721 email: bbiller@as.arizona.edu
Thomas Henning
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
Eric Nielsen
Affiliation:
Steward Observatory, University of Arizona, Tucson, AZ 85721 email: bbiller@as.arizona.edu
Markus Hartung
Affiliation:
European Southern Observatory, Alonso de Cordova 3107, Santiago 19, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the preliminary results of a survey of young ($<$300 Myr), close ($<$50 pc) stars with the Simultaneous Differential Extrasolar Planet Imager (SDI) implemented at the VLT and the MMT. SDI uses a quad filter to take images simultaneously at 3 wavelengths surrounding the 1.62 $\mu$m methane bandhead found in the spectrum of cool brown dwarfs and gas giants. By performing a difference of images in these filters, speckle noise from the primary can be significantly attenuated, resulting in photon noise limited data. In our survey data, we achieved H band contrasts $>$25000 (5$\sigma \Delta$F1(1.575$\mu$m)$>$10 mag, $\Delta$H$>$11.5 mag for a T6 spectral type) at a separation of 0.5” from the primary star. With this degree of attenuation, we should be able to image (5$\sigma$ detection) a 2-4 Jupiter mass planet at 5 AU around a 30 Myr star at 10 pc. We are currently completing our survey of young, nearby stars, with complete datasets for 35 stars in the southern sky (VLT) and 7 stars in the northern sky (MMT). We believe that our SDI images are the highest contrast astronomical images ever made from ground or space for methane rich companions.