Hostname: page-component-cb9f654ff-nr592 Total loading time: 0 Render date: 2025-08-30T03:56:43.395Z Has data issue: false hasContentIssue false

Simulating transient burst noise with gengli

Published online by Cambridge University Press:  01 August 2025

Melissa Lopez*
Affiliation:
Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands
Vincent Boudart
Affiliation:
STAR Institute, Bâtiment B5, Université de Liège, Sart Tilman B4000 Liège, Belgium
Stefano Schmidt
Affiliation:
Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands
Sarah Caudill
Affiliation:
Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands Department of Physics, University of Massachusetts, Dartmouth, MA 02747, USA Center for Scientific Computing and Visualization Research, University of Massachusetts, Dartmouth, MA 02747, USA
*

Abstract

In the field of gravitational-wave (GW) interferometers, the most severe limitation to the detection of transient signals from astrophysical sources comes from transient noise artefacts, known as glitches, that happens at a rate around 1 per minute. Because glitches reduce the amount of scientific data available, there is a need for better modelling and inclusion of glitches in large-scale studies, such as stress testing the search pipelines and increasing the confidence of detection. In this work, we employ a Generative Adversarial Network (GAN) to produce a particular class of glitches (blip) in the time domain. We share the trained network through a user-friendly open-source software package called <monospace>gengli</monospace> and provide practical examples of its usage.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aasi, J. et al. [LIGO Scientific], Class. Quant. Grav. 32, 074001 (2015)Google Scholar
Abbott, B. P. et al. [LIGO Scientific and Virgo], Class. Quant. Grav. 33, no.13, 134001 (2016)Google Scholar
Abbott, B. P. et al. [LIGO Scientific and Virgo] Phys. Rev. Lett. 116 no.6, 061102 (2016)Google Scholar
Abbott, B. P. et al. [LIGO Scientific and Virgo], Phys. Rev. Lett. 119, no.14, 141101 (2017)CrossRefGoogle Scholar
Abbott, B. P. et al. [LIGO Scientific and Virgo], Astrophys. J. Lett. 892, no.1, L3 (2020)Google Scholar
Abbott, R. et al. [LIGO Scientific, VIRGO and KAGRA], [arXiv:2111.03606 [gr-qc]].Google Scholar
Acernese, F. et al. [VIRGO], Class. Quant. Grav. 32, no.2, 024001 (2015)Google Scholar
Arjovsky, M., Chintala, S. and Bottou, L. (2017), arXiv:1701.07875Google Scholar
Cornish, N. J. and Littenberg, T. B., Class. Quant. Grav. 32, no.13, 135012 (2015)CrossRefGoogle Scholar
Goodfellow, I. J. et al., arXiv:1406.2661.Google Scholar
Gulrajani, I. et al., arXiv:1704.00028 (2017)Google Scholar
Hild, S. et al., Class. Quant. Grav. 28, 094013 (2011)CrossRefGoogle Scholar
Lopez, M. et al., Phys. Rev. D 106, no.2, 023027 (2022)CrossRefGoogle Scholar
Maggiore, M. et al., JCAP 03, arXiv:1912.02622 (2020)Google Scholar
Torres, A., Marquina, A., Font, J. A. and Ibáñez, J. M., Phys. Rev. D 90, no.8, 084029 (2014)CrossRefGoogle Scholar
Wei, X. et al. (2018), arXiv:1803.01541Google Scholar
Weng, L., arXiv:1904.08994 (2019)Google Scholar
Zevin, M. et al., Class. Quant. Grav. 34, no.6, 064003 (2017)CrossRefGoogle Scholar