Hostname: page-component-54dcc4c588-ff9ft Total loading time: 0 Render date: 2025-10-06T12:37:43.424Z Has data issue: false hasContentIssue false

The Red Rectangle: a thin disk with big grains

Published online by Cambridge University Press:  06 October 2025

Javier Alcolea*
Affiliation:
Observatorio Astronómico Nacional (IGN/CNIG), MITMA, Spain
Valentín Bujarrabal
Affiliation:
Observatorio Astronómico Nacional (IGN/CNIG), MITMA, Spain
Arancha Castro-Carrizo
Affiliation:
Institut de Radioastronomie Millimétrique, France
Jacques Kluska
Affiliation:
Instituut voor Sterrenkunde, KU Leuven, Belgium
Carmen Sánchez Contreras
Affiliation:
Centro de Astrobiología (CAB), CSIC-INTA, Spain
Hans van Winckel
Affiliation:
Instituut voor Sterrenkunde, KU Leuven, Belgium

Abstract

The Red Rectangle is a nebula surrounding the post-AGB star HD 44179. It is the prototype of a particular class of nebulae associated with post-AGB binaries characterised by the presence of stable circumbinary disks in (quasi-)Keplerian rotation. Here we present the results of new high-resolution (0.″ 02″05) ALMA observations of continuum and line emissions at 0.9 mm. The continuum maps are analysed through a simple model of dust emission, which can reproduce the observational data. We find that most dust emission in the Red Rectangle is concentrated in the central regions of the rotating disk and that the settlement of dust grains onto the equatorial plane is very significant, particularly in comparison with the much larger scale height displayed by the gas distribution. The diameter of the dust-emitting region is about 250 au, with a total width of about 50 au. This region coincides with the warm PDR where certain molecules (like HCN), CI, and CII are presumably formed, as well as probably PAHs. From the spectral index, we confirm the presence in the disk of large grains, with a typical radius of about 150 μm, which supports the long-lived hypothesis for this structure. We also confirm the existence of a compact ionised wind at the centre of the nebula, probably emerging from the accretion disk around the companion, for which we derive an extent of about 10 au and a total flux of 8 mJy. We also briefly present the results on molecular lines of 12CO, 13CO, and other less abundant species.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bujarrabal, V., Alcolea, J., Van Winckel, H., et al., 2013a, A&A, 557, A104 Google Scholar
Bujarrabal, V., Castro-Carrizo, A., Alcolea, J., et al., 2013b, A&A, 557, L11 Google Scholar
Bujarrabal, V., Castro-Carrizo, A., Alcolea, J., & Van Winckel, H., 2015, A&A, 575, L7 Google Scholar
Bujarrabal, V., Alcolea, J., Van Winckel, H., et al., 2016, A&A, 557, L11 Google Scholar
Bujarrabal, V., Alcolea, J., Castro-Carrizo, A., et al., 2023, A&A, 677, L18 Google Scholar
Cohen, M., Van Winckel, H., Bond, H. E., & Gull, T. R., 2004, AJ, 127, 2362 CrossRefGoogle Scholar
Deroo, P., Van Winckel, H., Min, M., et al., 2006, A&A, 450, 181 Google Scholar
Gallardo Cava, I., Bujarrabal, V., Alcolea, J., et al., 2022, A&A, 659, A134 Google Scholar
Gallardo Cava, I., Alcolea, J., Bujarrabal, V., et al., 2023, A&A, 671, A80 Google Scholar
Jura, M., Balm, S. P., & Kahane, C., 1995, ApJ, 453, 721 CrossRefGoogle Scholar
Jura, M., Turner, J., & Balm, S. P., 1997, ApJ, 474, 741 CrossRefGoogle Scholar
Kluska, J., Van Winckel, H., Hillen, M., et al., 2019, A&A, 631, A108 Google Scholar
Kluska, J., Van Winckel, H., Coppée, Q., et al., 2022, A&A, 658, A36 Google Scholar
Men’shchikov, A. B., Schertl, D., Tuthill, P. G., et al., 2002, A&A, 393, 867 Google Scholar
Nie, D. J., Wood, P. R., & Nicholls, C. P., 2012, MNRAS, 423, 2764 CrossRefGoogle Scholar
Oomen, G.-M., Van Winckel, H., Pols, O., et al., 2018, A&A, 620, A85 Google Scholar
Panagia, N. & Felli, M., 1975, A&A, 39, 1 Google Scholar
Thomas, J. D., Witt, A. N., Aufdenberg, J. P., et al., 2011, MNRAS, 417, 2860 CrossRefGoogle Scholar
Tielens, A. G. G. M., 2005, The Physics and Chemistry of the Interstellar Medium. Cambridge Univ. Press CrossRefGoogle Scholar
Van Winckel, H., 2003, ARAA, 41, 391 CrossRefGoogle Scholar
Van Winckel, H., 2018, arXiv:1809.00871 Google Scholar
Witt, A. N., Vijh, U. P., Hobbs, L. M., et al., 2009, ApJ, 693, 1946 CrossRefGoogle Scholar