Hostname: page-component-54dcc4c588-r5qjk Total loading time: 0 Render date: 2025-10-06T12:37:37.484Z Has data issue: false hasContentIssue false

Probing the physical and chemical properties of planetary nebulae using precision photoionization modeling

Published online by Cambridge University Press:  06 October 2025

H. Monteiro*
Affiliation:
Universidade Federal de Itajubá - UNIFEI
C. Mendes de Oliveira
Affiliation:
Departamento de Astronomia, Instituto de Astronomia, Geofísica e Ciências Atmosféricas da USP, Cidade Universitária, 05508-900, São Paulo, SP, Brazil
P. Amram
Affiliation:
Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France
Bruno C. Quint
Affiliation:
Rubin Observatory Project Office, 950 N. Cherry Ave., Tucson, AZ 85719, USA
L. Stanghellini
Affiliation:
NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719
R. Wesson
Affiliation:
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

Abstract

Planetary nebulae (PNe) are remnants of evolved stars, fundamental for understanding stellar life cycles and galactic enrichment. In this work, we present a summary of our recent work using three-dimensional models and spatially resolved constraints to examine the physical and chemical properties of PNe, with a particular focus on preliminary results for the PN NGC 3132. Our results indicate that a star of about 3M, surrounded by a shell, wind, or disk with approximately 5.0×10−6M and extending to about 300AU is necessary to adequately reproduce the observations, consistent with recent JWST findings. We also discuss the importance of this methodology in studying the properties of the progenitor stars and making abundance determinations.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akras, S., Clyne, N., Boumis, P., Monteiro, H., Gonçalves, D. R., Redman, M. P., & Williams, S. 2016, Deciphering the bipolar planetary nebula Abell 14 with 3D ionization and morphological studies. MNRAS, 457(4), 34093419.CrossRefGoogle Scholar
Akras, S., Monteiro, H., Aleman, I., Farias, M. A. F., May, D., & Pereira, C. B. 2020,a Exploring the differences of integrated and spatially resolved analysis using integral field unit data: the case of Abell 14. MNRAS, 493a(2), 2238–2252.CrossRefGoogle Scholar
Akras, S., Monteiro, H., Aleman, I., Farias, M. A. F., May, D., & Pereira, C. B. 2020,b Exploring the differences of integrated and spatially resolved analysis using integral field unit data: the case of Abell 14. MNRAS, 493b(2), 2238–2252.CrossRefGoogle Scholar
Akras, S., Monteiro, H., Walsh, J. R., Garca-Rojas, J., Aleman, I., Boffin, H., Boumis, P., Chiotellis, A., Corradi, R. M. L., Gonçalves, D. R., Gutiérrez-Soto, L. A., Jones, D., Morisset, C., & Papanikolaou, X. 2022, Spectroscopic analysis tool for intEgraL fieLd unIt daTacubEs (SATELLITE): case studies of NGC 7009 and NGC 6778 with MUSE. MNRAS, 512(2), 22022221.CrossRefGoogle Scholar
Ali, A. & Dopita, M. A. 2019, IFU spectroscopy of southern PNe - VII. Photoionization modelling of intermediate excitation class objects. MNRAS, 484(3), 32513266.CrossRefGoogle Scholar
Ali, A., Dopita, M. A., Basurah, H. M., Amer, M. A., Alsulami, R., & Alruhaili, A. 2016, IFU spectroscopy of southern planetary nebulae - III. MNRAS, 462(2), 13931404.CrossRefGoogle Scholar
Balick, B. & Frank, A. 2002, Shapes and Shaping of Planetary Nebulae. ARA&A, 40, 439486.Google Scholar
Basurah, H. M., Ali, A., Dopita, M. A., Alsulami, R., Amer, M. A., & Alruhaili, A. 2016, Problems for the WELS classification of planetary nebula central stars: self-consistent nebular modelling of four candidates. MNRAS, 458(3), 26942709.CrossRefGoogle Scholar
Blackman, E. G., Frank, A., & Welch, C. 2001, Magnetohydrodynamic Stellar and Disk Winds: Application to Planetary Nebulae. ApJ, 546(1), 288298.Google Scholar
Bloecker, T. 1995, Stellar evolution of low- and intermediate-mass stars. II. Post-AGB evolution. A&A, 299, 755.Google Scholar
Corradi, R. L. M. Multiple, Coeval and Hubble-Like Bipolar Outflows. In Meixner, M., Kastner, J. H., Balick, B., & Soker, N., editors, Asymmetrical Planetary Nebulae III: Winds, Structure and the Thunderbird 2004, volume 313 of Astronomical Society of the Pacific Conference Series, 148.Google Scholar
Danehkar, A. 2014, Evolution of Planetary Nebulae with WR-type Central Stars.CrossRefGoogle Scholar
Danehkar, A. 2018, Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8. PASA, 35, e005.Google Scholar
De Marco, O. 2009, The Origin and Shaping of Planetary Nebulae: Putting the Binary Hypothesis to the Test. PASP, 121(878), 316.CrossRefGoogle Scholar
De Marco, O., Akashi, M., Akras, S., Alcolea, J., Aleman, I., Amram, P., Balick, B., De Beck, E., Blackman, E. G., Boffin, H. M. J., Boumis, P., Bublitz, J., Bucciarelli, B., Bujarrabal, V., Cami, J., Chornay, N., Chu, Y.-H., Corradi, R. L. M., Frank, A., Garca-Hernández, D. A., Garca-Rojas, J., Garca-Segura, G., Gómez-Llanos, V., Gonçalves, D. R., Guerrero, M. A., Jones, D., Karakas, A. I., Kastner, J. H., Kwok, S., Lykou, F., Manchado, A., Matsuura, M., McDonald, I., Miszalski, B., Mohamed, S. S., Monreal-Ibero, A., Monteiro, H., Montez, R., Baez, P. M., Morisset, C., Nordhaus, J., Mendes de Oliveira, C., Osborn, Z., Otsuka, M., Parker, Q. A., Peeters, E., Quint, B. C., Quintana-Lacaci, G., Redman, M., Ruiter, A. J., Sabin, L., Sahai, R., Contreras, C. S., Santander-Garca, M., Seitenzahl, I., Soker, N., Speck, A. K., Stanghellini, L., Steffen, W., Toalá, J. A., Ueta, T., Van de Steene, G., Van Winckel, H., Ventura, P., Villaver, E., Vlemmings, W., Walsh, J. R., Wesson, R., & Zijlstra, A. A. 2022, The messy death of a multiple star system and the resulting planetary nebula as observed by JWST. Nature Astronomy, 6, 14211432.CrossRefGoogle Scholar
Ercolano, B., Barlow, M. J., Storey, P. J., Liu, X. W., Rauch, T., & Werner, K. 2003,a Three-dimensional photoionization modelling of the hydrogen-deficient knots in the planetary nebula Abell 30. MNRAS, 344a(4), 1145–1154.Google Scholar
Ercolano, B., Morisset, C., Barlow, M. J., Storey, P. J., & Liu, X. W. 2003,b Three-dimensional photoionization modelling of the planetary nebula NGC 3918. MNRAS, 340b(4), 1153–1172.Google Scholar
Ercolano, B., Wesson, R., Zhang, Y., Barlow, M. J., De Marco, O., Rauch, T., & Liu, X. W. 2004, Observations and three-dimensional photoionization modelling of the Wolf-Rayet planetary nebula NGC 1501. MNRAS, 354(2), 558574.CrossRefGoogle Scholar
Garca-Segura, G. 2002, MHD Models of Planetary Nebulae: Review. arXiv e-prints, astro–ph/0202041.Google Scholar
Gonçalves, D. R., Ercolano, B., Carnero, A., Mampaso, A., & Corradi, R. L. M. 2006, On the nitrogen abundance of fast, low-ionization emission regions: the outer knots of the planetary nebula NGC 7009. MNRAS, 365(3), 10391049.CrossRefGoogle Scholar
Jones, D., Boffin, H. M. J., Hibbert, J., Steinmetz, T., Wesson, R., Hillwig, T. C., Sowicka, P., Corradi, R. L. M., Garca-Rojas, J., Rodrguez-Gil, P., & Munday, J. 2020, The post-common-envelope binary central star of the planetary nebula PN G283.7-05.1. A possible post-red-giant-branch planetary nebula central star. A&A, 642, A108.Google Scholar
Kirkpatrick, R. C. 1970, Axially Symmetric Model Planetary Nebulae. ApJ, 162, 33.CrossRefGoogle Scholar
Krabbe, A. C. & Copetti, M. V. F. 2005, Electron temperature fluctuations in planetary nebulae. A&A, 443(3), 981994.Google Scholar
Krabbe, A. C. & Copetti, M. V. F. 2006, Chemical abundances in seven galactic planetary nebulae. A&A, 450(1), 159166.Google Scholar
Kwok, S. 2000,. The Origin and Evolution of Planetary Nebulae. Cambridge Astrophysics. Cambridge University Press.Google Scholar
Kwok, S., Purton, C. R., & Fitzgerald, P. M. 1978, On the origin of planetary nebulae. ApJ, 219, L125L127.CrossRefGoogle Scholar
Liu, X., Stanghellini, L., & Karakas, A. 2017, Planetary Nebulae: Multi-Wavelength Probes of Stellar and Galactic Evolution. Proceedings of the International Astronomical Union,(S323).Google Scholar
Meaburn, J., Lloyd, M., Vaytet, N. M. H., & López, J. A. 2008, Hubble-type outflows of the high-excitation poly-polar planetary nebula NGC 6302 - from expansion proper motions. MNRAS, 385(1), 269273.CrossRefGoogle Scholar
Mediavilla, E., Arribas, S., Roth, M., Cepa-Nogué, J., & Sánchez, F. 2011,. 3D Spectroscopy in Astronomy. Cambridge University Press. Google Scholar
Miller Bertolami, M. M. 2016, New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae. A&A, 588, A25.Google Scholar
Miller Bertolami, M. M. & Althaus, L. G. 2007, The born-again (very late thermal pulse) scenario revisited: the mass of the remnants and implications for V4334 Sgr. MNRAS, 380, 763770.CrossRefGoogle Scholar
Monreal-Ibero, A. & Walsh, J. R. 2020, The MUSE view of the planetary nebula NGC 3132. A&A, 634, A47.Google Scholar
Monteiro, H. & Falceta-Gonçalves, D. 2011, Three-dimensional Photoionization Structure and Distances of Planetary Nebulae. IV. NGC 40. ApJ, 738(2), 174.Google Scholar
Monteiro, H., Santos, P. M., & Falceta-Gonçalves, D. Detecting Abundance Variations in Planetary Nebulae. In Morisset, C., Delgado-Inglada, G., & Torres-Peimbert, S., editors, Asymmetrical Planetary Nebulae VI Conference 2014, 61.Google Scholar
Morisset, C. Photoionization models of Planetary Nebulae. In Liu, X., Stanghellini, L., & Karakas, A., editors, Planetary Nebulae: Multi-Wavelength Probes of Stellar and Galactic Evolution 2017, volume 323 of IAUS, pp. 4350.Google Scholar
Pignatari, M., Herwig, F., Hirschi, R., Bennett, M., Rockefeller, G., Fryer, C., Timmes, F. X., Ritter, C., Heger, A., Jones, S., Battino, U., Dotter, A., Trappitsch, R., Diehl, S., Frischknecht, U., Hungerford, A., Magkotsios, G., Travaglio, C., & Young, P. 2016, NuGrid Stellar Data Set. I.Stellar Yields from H to Bi for Stars with Metallicities Z = 0.02 and Z = 0.01. ApJS, 225(2), 24.CrossRefGoogle Scholar
Pottasch, S. R. & Bernard-Salas, J. 2010, Planetary nebulae abundances and stellar evolution II. A&A, 517, A95.Google Scholar
Sabbadin, F., Turatto, M., Ragazzoni, R., Cappellaro, E., & Benetti, S. 2006, The structure of planetary nebulae: theory vs. practice. A&A, 451(3), 937949.Google Scholar
Sabin, L., Zhang, Q., Zijlstra, A. A., Patel, N. A., Vázquez, R., Zauderer, B. A., Contreras, M. E., & Guillén, P. F. 2014, Submillimetre polarization and magnetic field properties in the envelopes of protoplanetary nebulae CRL 618 and OH 231.8+4.2, 438(2), 17941804.Google Scholar
Sabin, L., Zijlstra, A. A., & Greaves, J. S. 2007, Magnetic fields in planetary nebulae and post-AGB nebulae. MNRAS, 376(1), 378386.CrossRefGoogle Scholar
Sahai, R., Bujarrabal, V., Quintana-Lacaci, G., Reindl, N., Van de Steene, G., Sánchez Contreras, C., & Ressler, M. E. 2023, The Binary and the Disk: The Beauty is Found within NGC3132 with JWST. ApJ, 943(2), 110.CrossRefGoogle Scholar
Stanghellini, L., Villaver, E., Manchado, A., & Guerrero, M. A. 2002, The Correlations between Planetary Nebula Morphology and Central Star Evolution: Analysis of the Northern Galactic Sample. ApJ, 576(1), 285293.CrossRefGoogle Scholar
Steffen, W. & López, J. A. 2004, On the Velocity Structure in Clumpy Planetary Nebulae. ApJ, 612(1), 319331.CrossRefGoogle Scholar
Steffen, W. & López, J. A. 2006, Morpho-Kinematic Modeling of Gaseous Nebulae with SHAPE. Rev. Mexicana Astron. Astrofis., 42, 99105.Google Scholar
Toalá, J. A., Ramos-Larios, G., Guerrero, M. A., & Todt, H. 2019, Hidden IR structures in NGC 40: signpost of an ancient born-again event. MNRAS, 485(3), 33603369.CrossRefGoogle Scholar
Tsamis, Y. G., Barlow, M. J., Liu, X. W., Storey, P. J., & Danziger, I. J. 2004, A deep survey of heavy element lines in planetary nebulae - II. Recombination-line abundances and evidence for cold plasma. MNRAS, 353(3), 953979.CrossRefGoogle Scholar
Tsamis, Y. G., Walsh, J. R., Péquignot, D., Barlow, M. J., Danziger, I. J., & Liu, X. W. 2008, Integral field spectroscopy of planetary nebulae: mapping the line diagnostics and hydrogen-poor zones with VLT FLAMES. MNRAS, 386(1), 2246.CrossRefGoogle Scholar
Uscanga, L., Velázquez, P. F., Esquivel, A., Raga, A. C., Boumis, P., & Cantó, J. 2014, Modelling the 3D morphology and proper motions of the planetary nebula NGC 6302. MNRAS, 442(4), 31623165.CrossRefGoogle Scholar
Walsh, J. R., Monreal-Ibero, A., Barlow, M. J., Ueta, T., Wesson, R., & Zijlstra, A. A. 2016, The extinction and dust-to-gas structure of the planetary nebula NGC 7009 observed with MUSE. A&A, 588, A106.Google Scholar
Walsh, J. R., Monreal-Ibero, A., Barlow, M. J., Ueta, T., Wesson, R., Zijlstra, A. A., Kimeswenger, S., Leal-Ferreira, M. L., & Otsuka, M. 2018, An imaging spectroscopic survey of the planetary nebula NGC 7009 with MUSE. A&A, 620, A169.Google Scholar
Weedman, D. W. 1968, Observational Spatial and Kinematic Models of Planetary Nebulae. ApJ, 153, 49.CrossRefGoogle Scholar
Wilson, O. C. 1950, A Survey of Internal Motions in the Planetary Nebulae. ApJ, 111, 279.CrossRefGoogle Scholar
Wright, N. J., Barlow, M. J., Ercolano, B., & Rauch, T. 2011, A 3D photoionization model of the extreme planetary nebula NGC 6302. MNRAS, 418(1), 370389.CrossRefGoogle Scholar
Yuan, H. B., Liu, X. W., Péquignot, D., Rubin, R. H., Ercolano, B., & Zhang, Y. 2011, Three-dimensional chemically homogeneous and bi-abundance photoionization models of the ‘super-metal-rich’ planetary nebula NGC 6153. MNRAS, 411(2), 10351052.Google Scholar
Zijlstra, A. A., Chapman, J. M., te Lintel Hekkert, P., Likkel, L., Comeron, F., Norris, R. P., Molster, F. J., & Cohen, R. J. 2001, Bipolar outflows in OH/IR stars. MNRAS, 322(2), 280308.Google Scholar