Hostname: page-component-54dcc4c588-nx7b4 Total loading time: 0 Render date: 2025-10-06T10:47:48.184Z Has data issue: false hasContentIssue false

NanoSpace: Networking as a tool to understand carbon molecular nanostructures in planetary nebulae

Published online by Cambridge University Press:  06 October 2025

D. A. García-Hernández*
Affiliation:
Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain
*

Abstract

I present a short overview of the COST Action NanoSpace (“Carbon molecular nanostructures in space”; CA21126) together with the most recent updates. This includes the main motivation and scientific challenges, Action structure and organization (e.g., working groups, tasks, etc.) as well as the main objectives and deliverables. A special emphasis is given to the interdisciplinary approach proposed to attack the Action challenge and the main needs to drive the field forward. Planetary nebulae (PNe) are wonderful astrochemistry laboratories and a dominant source of complex carbon molecular nanostructures (i.e., nanocarbons) in space, being key astronomical objects for NanoSpace. The main goal is to show the power of networking as a tool to understand nanocarbons in PNe as well as to encourage the participation and collaborations between the PNe community and the multiple interdisciplinary research fields represented in NanoSpace.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bernard-Salas, J., Cami, J., Peeters, E., Jones, A. P., Micelotta, E. R. & Groenewegen, M. A. T. 2012, ApJ, 757, 41. doi: 10.1088/0004-637X/757/1/41 CrossRefGoogle Scholar
Cami, J., Bernard-Salas, J., Peeters, E., & Malek, S. E 2010, Science, 329, 1180. doi: 10.1126/science.1192035 CrossRefGoogle Scholar
Garca-Hernández, D. A., Manchado, A. Garca-Lario, P., Stanghellini, L., Villaver, E., Shaw, R. A., Szczerba, R., Perea-Calderón, J. V. 2010, ApJ, 724, L39. doi: 10.1088/2041-8205/ 724/1/L39 Google Scholar
Garca-Hernández, D. A., Iglesias-Groth, S., Acosta-Pulido, J. A., Manchado, A., Garca-Lario, P., Stanghellini, L., Villaver, E., Shaw, R. A., Cataldo, F. 2011a, ApJ, 737, L30. doi: 10.1088/2041-8205/737/2/L30 CrossRefGoogle Scholar
Garca-Hernández, D. A., Kameswara Rao, N. K., & Lambert, D. L. 2011b, ApJ, 729, 126. doi: 10.1088/0004-637X/729/2/126 CrossRefGoogle Scholar
Kwok, S. 2016, A&ARv, 24, 8. doi: 10.1007/s00159-016-0093-y Google Scholar
Matsuura, M., Zijlstra, A. A., Bernard-Salas, J., Menzies, J. W., Sloan, G. C., Whitelock, P. A., Wood, P. R., Cioni, M. -R. L. et al. 2007, MNRAS, 382, 1889. doi: 10.1111/j.1365-2966.2007.12501.x CrossRefGoogle Scholar
Matsuura, M., Bernard-Salas, J., Lloyd Evans, T., Volk, K. M., Hrivnak, B. J., Sloan, G. C., Chu, Y.-H., Gruendl, R. et al. 2014, MNRAS, 439, 1472. doi: 10.1093/mnras/stt2495 CrossRefGoogle Scholar
Omont, A. 2016, A&A, 590, A520 Google Scholar
Sittler, E. C., Cooper, J. F., Sturner, S. J.; Ali, A. 2020, Icarus, 344, 113246. doi: 10.1016/j.icarus.2019.03.023 CrossRefGoogle Scholar
Sloan, G. C., Lagadec, E., Zijlstra, A. A., Kraemer, K. E., Weis, A. P., Matsuura, M., Volk, K., Peeters, E. 2014, ApJ, 791, 28. doi: 10.1088/0004-637X/791/1/28 CrossRefGoogle Scholar