Hostname: page-component-54dcc4c588-54gsr Total loading time: 0 Render date: 2025-10-06T11:57:20.895Z Has data issue: false hasContentIssue false

Morpho-kinematical modelling in the molecular zoo beyond CO: the case of M 1-92

Published online by Cambridge University Press:  06 October 2025

Miguel Santander-García*
Affiliation:
Observatorio Astronómico Nacional (OAN-IGN), Spain
Elisa Masa
Affiliation:
Observatorio Astronómico Nacional (OAN-IGN), Spain
Javier Alcolea
Affiliation:
Observatorio Astronómico Nacional (OAN-IGN), Spain
Valentín Bujarrabal
Affiliation:
Observatorio Astronómico Nacional (OAN-IGN), Spain

Abstract

Ongoing improvements of sub-mm- and mm-range interferometers and single-dish radiotelescopes are progressively allowing the detailed study of planetary nebulae (PNe) in molecular species other than 12CO and 13CO. We are implementing a new set of tables for extending the capabilities of the morpho-kinematical modelling tool SHAPE+shapemol, so radiative transfer in molecular species beyond 12CO and 13CO, namely C17O, C18O, HCN, HNC, CS, SiO, HCO+, and N2H+, are enabled under the Large Velocity Gradient approximation with the ease of use of SHAPE. We present preliminary results on the simultaneous analysis of a plethora of IRAM-30m and HERSCHEL/HIFI spectra, and NOEMA maps of different species in the pre-PN nebula M 1-92, which show interesting features such as a previously undetected pair of polar, turbulent, high-temperature blobs, or a 17O/18O isotopic ratio of 1.7, which indicates the AGB should have turned C-rich, as opposed to the apparent nature of its O-rich nebula.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akashi, M., Soker, N., 2013, MNRAS, 436, 1961. doi: 10.1093/mnras/stt1704 CrossRefGoogle Scholar
Akashi, M., Soker, N., 2013, MNRAS, 481, 2754. doi: 10.1093/mnras/sty2479 CrossRefGoogle Scholar
Castor, J. I., 1970, MNRAS, 149, 111 CrossRefGoogle Scholar
Jones, D., 2020, Observational Constraints on the Common Envelope Phase, in Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology (eds. Kabath, Jones and Skarka; publisher Springer Nature), 123–153. doi: 10.1007/978-3-030-38509-5_5 CrossRefGoogle Scholar
Santander-García, M., Corradi, R. L. M., Mampaso, A., Balick, B., 2004, A&A, 426, 185. doi: 10.1051/0004-6361:20041147 Google Scholar
Santander-García, M., Bujarrabal, V., Koning, N., Steffen, W., 2015, A&A, 573, 56. doi: 10.1051/0004-6361/201322348 Google Scholar
Solf, J., Ulrich, H., 2022, A&A, 148, 274 Google Scholar
Steffen, W., Koning, N., Wenger, S., Morisset, C., Magnor, M., 2011, IEEE Transactions on Visualization and Computer Graphics, 17, 454. doi: 10.1109/TVCG.2010.62 CrossRefGoogle Scholar
Van Der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J., van Dishoeck, E. F., 2007, A&A, 468, 627. doi: 10.1051/0004-6361:20066820 Google Scholar