Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-10-06T11:03:45.262Z Has data issue: false hasContentIssue false

History of two mass loss processes in VY CMa.

Published online by Cambridge University Press:  06 October 2025

G. Quintana-Lacaci*
Affiliation:
Dept. of Molecular Astrophysics. IFF-CSIC; Centro de Astrobiología (CAB), CSIC-INTA; Instituut voor Sterrenkunde, KU Leuven; Institut de Radio Astronomie Millimétrique
L. Velilla
Affiliation:
Dept. of Molecular Astrophysics. IFF-CSIC; Centro de Astrobiología (CAB), CSIC-INTA; Instituut voor Sterrenkunde, KU Leuven; Institut de Radio Astronomie Millimétrique
J. P. Fonfría
Affiliation:
Dept. of Molecular Astrophysics. IFF-CSIC; Centro de Astrobiología (CAB), CSIC-INTA; Instituut voor Sterrenkunde, KU Leuven; Institut de Radio Astronomie Millimétrique
J. Cernicharo
Affiliation:
Dept. of Molecular Astrophysics. IFF-CSIC; Centro de Astrobiología (CAB), CSIC-INTA; Instituut voor Sterrenkunde, KU Leuven; Institut de Radio Astronomie Millimétrique
A. Castro-Carrizo
Affiliation:
Dept. of Molecular Astrophysics. IFF-CSIC; Centro de Astrobiología (CAB), CSIC-INTA; Instituut voor Sterrenkunde, KU Leuven; Institut de Radio Astronomie Millimétrique
M. Agúndez
Affiliation:
Dept. of Molecular Astrophysics. IFF-CSIC; Centro de Astrobiología (CAB), CSIC-INTA; Instituut voor Sterrenkunde, KU Leuven; Institut de Radio Astronomie Millimétrique
L. Decin
Affiliation:
Dept. of Molecular Astrophysics. IFF-CSIC; Centro de Astrobiología (CAB), CSIC-INTA; Instituut voor Sterrenkunde, KU Leuven; Institut de Radio Astronomie Millimétrique
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Red Supergiant stars (RSGs) are known to eject large amounts of material during this evolutionary phase. However, the processes powering the mass ejection in low- and intermediate-mass stars do not work for RSGs and the mechanism that drives the ejection remains unknown. Different mechanisms have been proposed as responsible for this mass ejection including Alfvén waves, large convective cells, and magnetohydrodynamical (MHD) disturbances at the photosphere, but so far little is known about the actual processes taking place in these objects. Here we present high angular resolution interferometric ALMA maps of VY CMa continuum and molecular emission, which resolve the structure of the ejecta with unprecedented detail. We reconstructed the 3D structure of the gas traced by the different species. It allowed us to study the morphology and kinematics of the gas traced by the different species surrounding VY CMa. Two types of ejecta are clearly observed: extended, irregular, and vast ejecta surrounding the star that are carved by localized fast outflows. The structure of the outflows is found to be particularly flat. We present a 3D reconstruction of these outflows and proof of the carving. This indicates that two different mass loss processes take place in this massive star. We tentatively propose the physical cause for the formation of both types of structures. These results provide essential information on the mass loss processes of RSGs and thus of their further evolution.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alcolea, J., Neri, R., & Bujarrabal, V. 2007, Minkowski’s footprint revisited. Planetary nebula formation from a single sudden event? A&A, 468(3), L41L44 Google Scholar
Höfner, S. & Olofsson, H. 2018, Mass loss of stars on the asymptotic giant branch. The Astronomy and Astrophysics Review, 26(1), 1 CrossRefGoogle Scholar
Humphreys, R. M., Helton, L. A., & Jones, T. J. 2007, The Three-Dimensional Morphology of VY Canis Majoris. I. The Kinematics of the Ejecta. AJ, 133(6), 27162729 CrossRefGoogle Scholar
Josselin, E. & Plez, B. 2007, Atmospheric dynamics and the mass loss process in red supergiant stars. A&A, 469, 671680 Google Scholar
Kamiński, T. 2019, Massive dust clumps in the envelope of the red supergiant VY Canis Majoris. A&A, 627, A114 Google Scholar
Lim, J., Carilli, C. L., White, S. M., Beasley, A. J., & Marson, R. G. 1998, Large convection cells as the source of Betelgeuse’s extended atmosphere. Nature, 392(6676), 575577 CrossRefGoogle Scholar
O’Gorman, E., Vlemmings, W., Richards, A. M. S., Baudry, A., De Beck, E., Decin, L., Harper, G. M., Humphreys, E. M., Kervella, P., Khouri, T., & Muller, S. 2015, ALMA observations of anisotropic dust mass loss in the inner circumstellar environment of the red supergiant VY Canis Majoris. A&A, 573, L1 Google Scholar
Shinnaga, H., Claussen, M. J., Yamamoto, S., & Shimojo, M. 2017, Strong magnetic field generated by the extreme oxygen-rich red supergiant VY Canis Majoris. Publications of the Astronomical Society of Japan, 69(6). L10 CrossRefGoogle Scholar
Welsch, B. T. Flux Accretion and Coronal Mass Ejection Dynamics. In AGU Fall Meeting Abstracts 2018, volume 2018, pp. SH13B–2934Google Scholar
Wheeler, J. C., Nance, S., Diaz, M., Smith, S. G., Hickey, J., Zhou, L., Koutoulaki, M., Sullivan, J. M., & Fowler, J. M. 2017, The Betelgeuse Project: constraints from rotation. MNRAS, 465(3), 26542661 CrossRefGoogle Scholar