Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-10-06T11:48:59.616Z Has data issue: false hasContentIssue false

GTC Spectroscopic Surveys of Planetary Nebulae in the Milky Way and M31

Published online by Cambridge University Press:  06 October 2025

Xuan Fang*
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences (NAOC), Beijing 100101, China; Laboratory for Space Research, Faculty of Science, The University of Hong Kong, Hong Kong, China
Haomiao Huang
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences (NAOC), Beijing 100101, China; School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
Martín A. Guerrero
Affiliation:
Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada, Spain
Letizia Stanghellini
Affiliation:
NSF’s NOIRLab, 950 N. Cherry Ave., Tucson, AZ 85719, USA
Rubén García-Benito
Affiliation:
Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada, Spain
Ting-Hui Lee
Affiliation:
Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA
Yong Zhang
Affiliation:
Laboratory for Space Research, Faculty of Science, The University of Hong Kong, Hong Kong, China School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report spectroscopic surveys of planetary nebulae (PNe) in the Milky Way and Andromeda (M31), using the 10.4-m Gran Telescopio Canarias (GTC). The spectra are of high quality and cover the whole optical range, mostly from 3650 Å to beyond 1 μm, enabling detection of nebular emission lines critical for spectral analysis and photoionization modeling. We obtained GTC spectra of 24 compact (angular diameter <5 arcsec) PNe located in the Galactic disk, ∼3–20 kpc from the Galactic centre, and that can be used to constrain stellar evolution models and derive radial abundance gradients of the Milky Way. We have observed 30 PNe in the outer halo of M31 using the GTC. These halo PNe are uniformly metal-rich and probably all evolved from low-mass stars, consistent with the conjecture that they formed from the metal-rich gas in M31 disk but were displaced to their present locations due to galaxy interactions.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Balick, B., Kwitter, K. B., Corradi, R. L. M., & Henry, R. B. C., 2013, ApJ, 774, 3, DOI: 10.1088/0004-637X/774/1/3 CrossRefGoogle Scholar
Corradi, R. L. M., Kwitter, K. B., Balick, B., et al., 2015, ApJ, 807, 181, DOI: 10.1088/0004-637X/807/2/181 CrossRefGoogle Scholar
Dufour, R. J., Kwitter, K. B., Shaw, R. A., et al., 2015, ApJ, 803, 23, DOI: 10.1088/0004-637X/803/1/23 CrossRefGoogle Scholar
Gerhard, O., Arnaboldi, M., Freeman, K. C., et al., 2005, ApJL, 621, L93, DOI: 10.1086/429221 CrossRefGoogle Scholar
Gerhard, O., Arnaboldi, M., Freeman, K. C., et al., 2007, A&A, 468, 815, DOI: 10.1051/0004-6361:20066484 Google Scholar
Fang, X., Zhang, Y., Garía-Benito, R., Liu, X.-W., & Yuan, H.-B., 2013, ApJ, 774, 138, DOI: 10.1088/0004-637X/774/2/138 CrossRefGoogle Scholar
Fang, X., García-Benito, R., Guerrero, M. A., et al., 2015, ApJ, 815, 69, DOI: 10.1088/0004-637X/815/1/69 CrossRefGoogle Scholar
Fang, X., García-Benito, R., Guerrero, M. A., et al., 2018, ApJ, 853, 50, DOI: 10.3847/1538-4357/aaa1e5 CrossRefGoogle Scholar
Ferland, G. J., Chatzikos, M., Guzmán, F., et al., 2017, RMxAA, 53, 385, DOI: 10.48550/arXiv.1705.10877 Google Scholar
Ferland, G. J., Korista, K. T., Verner, D. A., et al., 1998, PASP, 110, 761, DOI: 10.1086/316190 CrossRefGoogle Scholar
Hammer, F., Yang, Y. B., Wang, J. L., et al., 2018, MNRAS, 475, 2754, DOI: 10.1093/mnras/stx3343 CrossRefGoogle Scholar
Henry, R. B. C., Stephenson, B. G., Miller Bertolami, M. M., Kwitter, K. B., & Balick, B., 2018, MNRAS, 473, 241, DOI: 10.1093/mnras/stx2286 CrossRefGoogle Scholar
Herwig, F., 2005, ARA&A, 43, 435, DOI: 10.1146/annurev.astro.43.072103.150600 Google Scholar
Ibata, R. A., Irwin, M. J., Lewis, G., et al., 2001, Nature, 412, 49, DOI: 10.1038/35083506 CrossRefGoogle Scholar
Karakas, A. I., & Lugaro, M., 2016, ApJ 825, 26, DOI: 10.3847/0004-637X/825/1/26 CrossRefGoogle Scholar
Kingsburgh, R. L., & Barlow, M. J., 1994, MNRAS, 271, 257, DOI: 10.1093/mnras/271.2.257 CrossRefGoogle Scholar
Kwitter, K. B., Lehman, E. M. M., Balick, B., & Henry, R. B. B., 2012, ApJ, 753, 12, DOI: 10.1088/0004-637X/753/1/12 CrossRefGoogle Scholar
Longobardi, A., Arnaboldi, M., Gerhard, O., et al., 2018, A&A, 620, A111, DOI: 10.1051/0004-6361/201832729 Google Scholar
McConnachie, A. W., Irwin, M. J., Ferguson, A. M. N., et al., 2005, MNRAS, 356, 979, DOI: 10.1111/j.1365-2966.2004.08514.x CrossRefGoogle Scholar
McConnachie, A. W., Irwin, M. J., Ibata, R. A., et al., 2009, Nature, 461, 66, DOI: 10.1038/nature08327 CrossRefGoogle Scholar
Merrett, H. R., Kuijken, K., Merrifield, M. R., et al., 2003, MNRAS, 346, L62, DOI: 10.1111/j.1365-2966.2003.07367.x CrossRefGoogle Scholar
Milingo, J. B., Kwitter, K. B., Henry, R. B. C., & Souza, S. P., 2010, ApJ, 711, 619, DOI: 10.1088/0004-637X/711/2/619 CrossRefGoogle Scholar
Miller Bertolami, M. M., 2016, A&A, 588, A25, DOI: 10.1051/0004-6361/201526577 Google Scholar
Osterbrock, D. E., & Ferland, G. J., 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Sausalito, CA: Univ. Science Books)Google Scholar
Richardson, J. C., Ferguson, A. M. N., Mackey, A. C., et al., 2009, MNRAS, 396, 1842, DOI: 10.1111/j.1365-2966.2009.14788.x CrossRefGoogle Scholar
Stanghellini, L., García-Hernández, D. A., García-Lario, P., et al., 2012, ApJ, 753, 172, DOI: 10.1088/0004-637X/753/2/172 CrossRefGoogle Scholar
Stanghellini, L., & Haywood, M., 2010, ApJ, 714, 1096, DOI: 10.1088/0004-637X/714/2/1096 CrossRefGoogle Scholar
Stanghellini, L., Shaw, R. A., & Villaver, E., 2016, ApJ, 830, 33, DOI: 10.3847/0004-637X/830/1/33 CrossRefGoogle Scholar