Hostname: page-component-54dcc4c588-rz4zl Total loading time: 0 Render date: 2025-10-10T19:41:17.052Z Has data issue: false hasContentIssue false

Dust formation in AGB stars and planetary nebulae

Published online by Cambridge University Press:  06 October 2025

Mikako Matsuura*
Affiliation:
Cardiff Hub for Astrophysical Research and Technology (CHART), School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A high sensitivity and high-angular resolutions infrared space telescope, the James Webb Space Telescope (JWST), allowed us to study dust and molecules in unprecedented details. This contribution highlights the first year of JWST’s scientific operation, and reports prospects of dust and molecular studies in the coming future.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Allamandola, L. J., Tielens, A. G. G. M., & Barker, J. R. 1989, Interstellar polycyclic aromatic hydrocarbons - The infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophysical Journal Supplement Series (ISSN 0067-0049), 71, 733775.Google Scholar
Bernard-Salas, J., Peeters, E., Sloan, G. C., Gutenkunst, S., Matsuura, M., Tielens, A. G. G. M., Zijlstra, A. A., & Houck, J. R. 2009, UNUSUAL DUST EMISSION FROM PLANETARY NEBULAE IN THE MAGELLANIC CLOUDS. The Astrophysical Journal, 699(2), 15411552.CrossRefGoogle Scholar
Berné, O., Martin-Drumel, M.-A., Schroetter, I., Goicoechea, J. R., Jacovella, U., Gans, B., Dartois, E., Coudert, L. H., Bergin, E., Alarcon, F., Cami, J., Roueff, E., Black, J. H., Asvany, O., Habart, E., Peeters, E., Canin, A., Trahin, B., Joblin, C., Schlemmer, S., Thorwirth, S., Cernicharo, J., Gerin, M., Tielens, A., Zannese, M., Abergel, A., Bernard-Salas, J., Boersma, C., Bron, E., Chown, R., Cuadrado, S., Dicken, D., Elyajouri, M., Fuente, A., Gordon, K. D., Issa, L., Kannavou, O., Khan, B., Lacinbala, O., Languignon, D., Gal, R. L., Maragkoudakis, A., Meshaka, R., Okada, Y., Onaka, T., Pasquini, S., Pound, M. W., Robberto, M., Röllig, M., Schefter, B., Schirmer, T., Sidhu, A., Tabone, B., Putte, D. V. D., Vicente, S., & Wolfire, M. G. 2023, Formation of the methyl cation by photochemistry in a protoplanetary disk. Nature, 14.Google Scholar
Black, J. H. & Dalgarno, A. 1977, Models of interstellar clouds. I - The Zeta Ophiuchi cloud. The Astrophysical Journal Supplement Series, 34, 405.CrossRefGoogle Scholar
Bohlin, R. C., Savage, B. D., & Drake, J. F. 1978, A survey of interstellar H I from L-alpha absorption measurements. II. Astrophysical Journal, 224, 132. A&AA ID. AAA022.131.015.CrossRefGoogle Scholar
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, The relationship between infrared, optical, and ultraviolet extinction. Astrophysical Journal, 345, 245.CrossRefGoogle Scholar
Cherchneff, I. 2012, The inner wind of IRC+ 10216 revisited: new exotic chemistry and diagnostic for dust condensation in carbon stars. A&A, 545, A12.Google Scholar
Cox, N. L. J., Pilleri, P., Berne, O., Cernicharo, J., & Joblin, C. 2016, Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: the case of NGC 6720. MNRAS, 456(1), L89L93.CrossRefGoogle ScholarPubMed
De Marco, O., Akashi, M., Akras, S., & et al. 2022, The messy death of a multiple star system and the resulting planetary nebula as observed by JWST. Nature Astronomy, 6(12), 14211432.CrossRefGoogle Scholar
Garcia-Segura, G. & Franco, J. 1996, From Ultracompact to Extended H II Regions. ApJ, 469, 171.CrossRefGoogle Scholar
Garca-Segura, G. & Mac Low, M.-M. 1995, Wolf-Rayet Bubbles. II. Gasdynamical Simulations. ApJ, 455, 160.CrossRefGoogle Scholar
Gardner, J. P., Mather, J. C., Abbott, R., & et al. 2023, The James Webb Space Telescope Mission. PASP, 135(1048), 068001.CrossRefGoogle Scholar
Gordon, K. D., Roman-Duval, J., Bot, C., Meixner, M., Babler, B., Bernard, J.-P., Bolatto, A. D., Boyer, M. L., Clayton, G. C., Engelbracht, C., Fukui, Y., Galametz, M., Galliano, F., Hony, S., Hughes, A., Indebetouw, R., Israel, F. P., Jameson, K., Kawamura, A., Lebouteiller, V., Li, A., Madden, S. C., Matsuura, M., Misselt, K., Montiel, E., Okumura, K., Onishi, T., Panuzzo, P., Paradis, D., Rubio, M., Sandstrom, K. M., Sauvage, M., Seale, J., Sewiło, M., Tchernyshyov, K., & Skibba, R. 2014, Dust and gas in the Magellanic Clouds from the Heritage Herschelkey Project. I. Dust properties and insights into the origin of the submillimeter excess emission. The Astrophysical Journal, 797(2), 85.CrossRefGoogle Scholar
Gruendl, R. A., Chu, Y.-H., Seale, J. P., Matsuura, M., Speck, A. K., Sloan, G. C., & Looney, L. W. 2008, Discovery of Extreme Carbon Stars in the Large Magellanic Cloud. The Astrophysical Journal, 688(1), L9L12. (c) 2008: The American Astronomical Society.CrossRefGoogle Scholar
Houck, J. R., Roellig, T. L., van Cleve, J., & et al. 2004, The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. ApJS, 154(1), 1824.CrossRefGoogle Scholar
Jones, O. C., Álvarez-Márquez, J., Sloan, G. C., Kavanagh, P. J., Argyriou, I., Law, D. R., Labiano, A., Patapis, P., Mueller, M., Larson, K. L., Bright, S. N., Klaassen, P. D., Fox, O. D., Gasman, D., Geers, V. C., Glauser, A. M., Guillard, P., Nayak, O., Noriega-Crespo, A., Ressler, M. E., Sargent, B., Temim, T., Vandenbussche, B., & Garca Marn, M. 2023, Observations of the planetary nebula SMP LMC 058 with the JWST MIRI medium resolution spectrometer. MNRAS, 523(2), 25192529.Google Scholar
Justtanont, K., Olofsson, G., Dijkstra, C., & Meyer, A. W. 2006, Near-infrared observations of water-ice in OH/IR stars. A&A, 450(3), 10511059.Google Scholar
Lindegren, L., Bastian, U., Biermann, M., Bombrun, A., de Torres, A., Gerlach, E., Geyer, R., Hernández, J., Hilger, T., Hobbs, D., Klioner, S. A., Lammers, U., McMillan, P. J., Ramos-Lerate, M., Steidelmüller, H., Stephenson, C. A., & van Leeuwen, F. 2021, Gaia Early Data Release 3. Parallax bias versus magnitude, colour, and position. A&A, 649, A4.Google Scholar
Liu, Y., Liu, X., Luo, S., & Barlow, M. J. 2004, Chemical abundances of planetary nebulae from optical recombination lines – I. Observations and plasma diagnostics. Monthly Notices of the Royal Astronomical Society, 353(4), 12311250.CrossRefGoogle Scholar
Mastrodemos, N. & Morris, M. 1999, Bipolar Pre–Planetary Nebulae: Hydrodynamics of Dusty Winds in Binary Systems. II. Morphology of the Circumstellar Envelopes. Astrophysical Journal, 523(1), 357380.CrossRefGoogle Scholar
Matsuura, M., Bernard-Salas, J., Evans, T. L., Volk, K. M., Hrivnak, B. J., Sloan, G. C., Chu, Y.-H., Gruendl, R., Kraemer, K. E., Peeters, E., Szczerba, R., Wood, P. R., Zijlstra, A. A., Hony, S., Ita, Y., Kamath, D., Lagadec, E., Parker, Q. A., Reid, W. A., Shimonishi, T., Winckel, H. V., Woods, P. M., Kemper, F., Meixner, M., Otsuka, M., Sahai, R., Sargent, B. A., Hora, J. L., & McDonald, I. 2014, Spitzer Space Telescope spectra of post-AGB stars in the Large Magellanic Cloud - polycyclic aromatic hydrocarbons at low metallicities. Monthly Notices of the Royal Astronomical Society, 439(2), 14721493.CrossRefGoogle Scholar
Matsuura, M., Speck, A. K., McHunu, B. M., Tanaka, I., Wright, N. J., Smith, M. D., Zijlstra, A. A., Viti, S., & Wesson, R. 2009, A “Firework” of H2 Knots in the Planetary Nebula NGC 7293 (The Helix Nebula). ApJ, 700(2), 10671077.CrossRefGoogle Scholar
Matsuura, M., Speck, A. K., Smith, M. D., Zijlstra, A. A., Viti, S., Lowe, K. T. E., Redman, M., Wareing, C. J., & Lagadec, E. 2007, VLT/near-infrared integral field spectrometer observations of molecular hydrogen lines in the knots of the planetary nebula NGC 7293 (the Helix Nebula). MNRAS, 382(4), 14471459.CrossRefGoogle Scholar
Matsuura, M., Woods, P. M., & Owen, P. J. 2013, The global gas and dust budget of the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 429(3), 25272536.CrossRefGoogle Scholar
Meixner, M., McCullough, P., Hartman, J., Son, M., & Speck, A. 2005, The Multitude of Molecular Hydrogen Knots in the Helix Nebula. AJ, 130(4), 17841794.CrossRefGoogle Scholar
Micelotta, E. R., Jones, A. P., & Tielens, A. G. G. M. 2010, Polycyclic aromatic hydrocarbon processing in interstellar shocks. Astronomy and Astrophysics, 510, A36.CrossRefGoogle Scholar
Molster, F. J., Waters, L. B. F. M., Tielens, A. G. G. M., & Barlow, M. J. 2002, Crystalline silicate dust around evolved stars. I. The sample stars. Astronomy and Astrophysics, 382, 184.CrossRefGoogle Scholar
O’Dell, C. R., McCullough, P. R., & Meixner, M. 2004, Unraveling the Helix Nebula: Its Structure and Knots. AJ, 128(5), 23392356.CrossRefGoogle Scholar
Pontoppidan, K. M., Barrientes, J., Blome, C., & et al. 2022, The JWST Early Release Observations. ApJ, 936(1), L14.CrossRefGoogle Scholar
Rieke, M. J., Kelly, D. M., Misselt, K., & et al. 2023, Performance of NIRCam on JWST in Flight. PASP, 135(1044), 028001.CrossRefGoogle Scholar
Sandstrom, K. M., Bolatto, A. D., Draine, B. T., Bot, C., & Stanimirović, S. 2010, The Spitzer Survey of the Small Magellanic Cloud (S3MC): Insights into the Life Cycle of Polycyclic Aromatic Hydrocarbons. The Astrophysical Journal, 715, 701.CrossRefGoogle Scholar
Sanduleak, N., MacConnell, D. J., & Philip, A. G. D. 1978, The planetary nebula systems of the Magellanic Clouds. PASP, 90, 621635.CrossRefGoogle Scholar
Sloan, G. C., Lagadec, E., Zijlstra, A. A., Kraemer, K. E., Weis, A. P., Matsuura, M., Volk, K. M., Peeters, E., Duley, W. W., Cami, J., Bernard-Salas, J., Kemper, F., & Sahai, R. 2014, Carbon-rich Dust Past the Asymptotic Giant Branch: Aliphatics, Aromatics, and Fullerenes in the Magellanic Clouds. Astrophysical Journal, 791(1), 28.CrossRefGoogle Scholar
Speck, A. K., Thompson, G. D., & Hofmeister, A. M. 2005, The Effect of Stellar Evolution on SiC Dust Grain Sizes. The Astrophysical Journal, 634, 426. (c) 2005: The American Astronomical Society.CrossRefGoogle Scholar
Tabone, B., Bettoni, G., Dishoeck, E. F. v., Arabhavi, A. M., Grant, S., Gasman, D., Henning, T., Kamp, I., Güdel, M., Lagage, P. O., Ray, T., Vandenbussche, B., Abergel, A., Absil, O., Argyriou, I., Barrado, D., Boccaletti, A., Bouwman, J., Garatti, A. C. o., Geers, V., Glauser, A. Justannont, M., Lahuis, K., Mueller, F., Nehmé, C., M., Olofsson, G., Pantin, E., Scheithauer, S., Waelkens, C., Waters, L. B. F. M., Black, J. H., Christiaens, V., Guadarrama, R., Morales-Calderón, M., Jang, H., Kanwar, J., Pawellek, N., Perotti, G., Perrin, A., Rodgers-Lee, D., Samland, M., Schreiber, J., Schwarz, K., Colina, L., Östlin, G., & Wright, G. 2023, A rich hydrocarbon chemistry and high C to O ratio in the inner disk around a very low-mass star. Nature Astronomy, 7(7), 805814.CrossRefGoogle Scholar
Waters, L. B. F. M., Jong, T. d., Molster, F. J., Loon, J. T. v., Bouwman, J., Koter, A. D., Waelkens, C., Winckel, H. V., Morris, P. W., Cami, J., & Graauw, T. d. 1998, An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle. Nature, 391, 868.CrossRefGoogle Scholar
Wesson, R., Matsuura, M., Zijlstra, A. A., & et al. 2023, JWST observations of the Ring Nebula (NGC 6720): I. Imaging of the rings, globules, and arcs. arXiv e-prints, arXiv:2308.09027.Google Scholar
Winckel, H. V., Evans, T. L., Reyniers, M., Deroo, P., & Gielen, C. 2006, Binary post-AGB stars and their Keplerian discs. Memorie della Societa Astronomica Italiana, 77, 943. (c) 2006: SAIt.Google Scholar
Wright, G. S., Rieke, G. H., Glasse, A., & et al. 2023, The Mid-infrared Instrument for JWST and Its In-flight Performance. PASP, 135(1046), 048003.CrossRefGoogle Scholar