Hostname: page-component-cb9f654ff-mx8w7 Total loading time: 0 Render date: 2025-09-03T14:37:13.425Z Has data issue: false hasContentIssue false

Chemical abundances in tidally disrupted globular clusters

Published online by Cambridge University Press:  18 January 2010

D. Yong
Affiliation:
Australian National University, Mount Stromlo Observatory, Australia
J. Meléndez
Affiliation:
Centro de Astrofísica da Universidade do Porto, Portugal
K. Cunha
Affiliation:
National Optical Astronomy Observatories, USA
A. I. Karakas
Affiliation:
Australian National University, Mount Stromlo Observatory, Australia
J. E. Norris
Affiliation:
Australian National University, Mount Stromlo Observatory, Australia
V. V. Smith
Affiliation:
National Optical Astronomy Observatories, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present abundance measurements in the tidally disrupted globular cluster NGC 6712. In this cluster, there are large star-to-star variations of the light elements C, N, O, F and Na. While such abundance variations are seen in every well-studied globular cluster, they are not found in field stars and indicate that clusters like NGC 6712 cannot provide many field stars and/or field stars do not form in environments with chemical-enrichment histories like those of NGC 6712. Preliminary analysis of NGC 5466, another tidally disrupted cluster, suggests little (if any) abundance variation for O and Na and the abundance ratios [X/Fe] are comparable to field stars at the same metallicity. Therefore, globular clusters like NGC 5466 may have been Galactic building blocks.

References

Belokurov, V., Evans, N. W., Irwin, M. J., Hewett, P. C., & Wilkinson, M. I. 2006, ApJ (Letters), 637, L29CrossRefGoogle Scholar
Carretta, E. 2006, AJ, 131, 1766CrossRefGoogle Scholar
Cunha, K. & Smith, V. V. 2005, ApJ, 626, 425CrossRefGoogle Scholar
Cunha, K., Smith, V. V., & Gibson, B. K. 2008, ApJ (Letters), 679, L17CrossRefGoogle Scholar
Cunha, K., Smith, V. V., Lambert, D. L., & Hinkle, K. H. 2003, AJ, 126, 1305CrossRefGoogle Scholar
de Marchi, G., Leibundgut, B., Paresce, F., & Pulone, L. 1999, A&A (Letters), 343, L9Google Scholar
Dinescu, D. I., Girard, T. M., & van Altena, W. F. 1999, AJ, 117, 1792CrossRefGoogle Scholar
Gratton, R. G., Bragaglia, A., Carretta, E., Clementini, G., Desidera, S., Grundahl, F., & Lucatello, S. 2003, A&A, 408, 529Google Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385Google Scholar
Karakas, A. I., Lee, H. Y., Lugaro, M., Görres, J., & Wiescher, M. 2008, ApJ, 676, 1254CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARA&A, 41, 57Google Scholar
Meléndez, J. & Cohen, J. G. 2009, ApJ, 699, 2017CrossRefGoogle Scholar
Odenkirchen, M., et al. , 2001, ApJ (Letters), 548, L165CrossRefGoogle Scholar
Peebles, P. J. E. & Dicke, R. H. 1968, ApJ, 154, 891CrossRefGoogle Scholar
Smith, G. H., Sneden, C., & Kraft, R. P. 2002, AJ, 123, 1502CrossRefGoogle Scholar
Smith, V. V., Cunha, K., Ivans, I. I., Lattanzio, J. C., Campbell, S., & Hinkle, K. H. 2005, ApJ, 633, 392CrossRefGoogle Scholar
Takahashi, K. & Portegies Zwart, S. F. 2000, ApJ, 535, 759CrossRefGoogle Scholar
Yong, D., Grundahl, F., Johnson, J. A., & Asplund, M. 2008, ApJ, 684, 1159CrossRefGoogle Scholar
Yong, D., Meléndez, J., Cunha, K., Karakas, A. I., Norris, J. E., & Smith, V. V. 2008, ApJ, 689, 1020CrossRefGoogle Scholar