Hostname: page-component-54dcc4c588-mz6gc Total loading time: 0 Render date: 2025-10-06T18:54:49.819Z Has data issue: false hasContentIssue false

Towards Precision Cosmology With Improved PNLF Distances Using VLT-MUSE

Published online by Cambridge University Press:  06 October 2025

George H. Jacoby
Affiliation:
NSF’s NOIRLab, U.S.A.
Robin Ciardullo
Affiliation:
The Penn State University, U.S.A.
Martin M. Roth
Affiliation:
Leibniz Institute for Astrophysics Potsdam (AIP), Germany
Magda Arnaboldi
Affiliation:
European Southern Observatory

Abstract

We analyzed VLT/MUSE data for 20 galaxies in the ESO public archive to identify their systems’ planetary nebulae (PNe). Using the differential emission line filter (DELF) technique, we performed photometry of the galaxies’ PNe and determined their distances via the planetary nebula luminosity function (PNLF). Of the 16 galaxies for which a quality PNLF could be formed, two are isolated and more distant than 30 Mpc and therefore, relatively unaffected by Hubble Flow peculiar velocities. Using these data, we derived a Hubble Constant of 74.2 ± 7.2 (stat) ±3.7 (sys) km s−1 Mpc−1, a value that is similar to that found from other quality indicators (e.g., Cepheids, the tip of the red giant branch, and surface brightness fluctuations), but with a larger uncertainty due to the small number of galaxies. We describe how to improve PNLF measurements so that the precision of the technique is comparable to that of other quality distance indicators. We also describe a path forward in the era of ELTs that supersedes current techniques.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5, doi: http://doi.org/10.1086/13076610.1086/130766 CrossRefGoogle Scholar
Bhattacharya, S., Arnaboldi, M., Caldwell, N., et al. 2019, A&A, 631, A56, doi: http://doi.org/10.1051/0004-6361/20193589810.1051/0004-6361/201935898 CrossRefGoogle Scholar
Chase, O., Ciardullo, R., Roth, M. M., & Jacoby, G. H. 2023, ApJ, 950, 59, doi: http://doi.org/10.3847/1538-4357/acc9bd10.3847/1538-4357/acc9bd CrossRefGoogle Scholar
Ciardullo, R. 2012, Ap&SS, 341, 151, doi: http://doi.org/10.1007/s10509-012-1061-210.1007/s10509-012-1061-2 CrossRefGoogle Scholar
Ciardullo, R., Feldmeier, J. J., Jacoby, G. H., et al. 2002 a, ApJ, 577, 31, doi: http://doi.org/10.1086/34218010.1086/342180 CrossRefGoogle Scholar
Ciardullo, R., Feldmeier, J. J., Krelove, K., Jacoby, G. H., & Gronwall, C. 2002 b, ApJ, 566, 784, doi: http://doi.org/10.1086/33823010.1086/338230 CrossRefGoogle Scholar
Ciardullo, R., & Jacoby, G. H. 1992, ApJ, 388, 268, doi: http://doi.org/10.1086/17115010.1086/171150 CrossRefGoogle Scholar
Ciardullo, R., & Jacoby, G. H. 1999, ApJ, 515, 191, doi: http://doi.org/10.1086/30702510.1086/307025 CrossRefGoogle Scholar
Ciardullo, R., Jacoby, G. H., Ford, H. C., & Neill, J. D. 1989, ApJ, 339, 53, doi: http://doi.org/10.1086/16727510.1086/167275 CrossRefGoogle Scholar
Ciardullo, R., Jacoby, G. H., & Tonry, J. L. 1993, ApJ, 419, 479, doi: http://doi.org/10.1086/17350110.1086/173501 CrossRefGoogle Scholar
Davis, B. D., Ciardullo, R., Jacoby, G. H., Feldmeier, J. J., & Indahl, B. L. 2018, ApJ, 863, 189, doi: http://doi.org/10.3847/1538-4357/aad3c410.3847/1538-4357/aad3c4 CrossRefGoogle Scholar
Dopita, M. A., Jacoby, G. H., & Vassiliadis, E. 1992, ApJ, 389, 27, doi: http://doi.org/10.1086/17118610.1086/171186 CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Hatt, D., et al. 2019, ApJ, 882, 34, doi: http://doi.org/10.3847/1538-4357/ab2f7310.3847/1538-4357/ab2f73 CrossRefGoogle Scholar
Garnavich, P., Wood, C. M., Milne, P., et al. 2023, ApJ, 953, 35, doi: http://doi.org/10.3847/1538-4357/ace04b10.3847/1538-4357/ace04b CrossRefGoogle Scholar
Jacoby, G. H., Ciardullo, R., Roth, M. M., Arnaboldi, M., & Weilbacher, P. M. 2023, arXiv e-prints, arXiv:2309.11603, doi: http://doi.org/10.48550/arXiv.2309.1160310.48550/arXiv.2309.11603 CrossRefGoogle Scholar
Jacoby, G. H., Branch, D., Ciardullo, R., et al. 1992, PASP, 104, 599, doi: http://doi.org/10.1086/13303510.1086/133035 CrossRefGoogle Scholar
Kamionkowski, M., & Riess, A. G. 2023, Annual Review of Nuclear and Particle Science, 73, 153, doi: http://doi.org/10.1146/annurev-nucl-111422-02410710.1146/annurev-nucl-111422-024107 CrossRefGoogle Scholar
Kreckel, K., Groves, B., Bigiel, F., et al. 2017, ApJ, 834, 174, doi: http://doi.org/10.3847/1538-4357/834/2/17410.3847/1538-4357/834/2/174 CrossRefGoogle Scholar
Pesce, D. W., Braatz, J. A., Reid, M. J., et al. 2020, ApJ, 891, L1, doi: http://doi.org/10.3847/2041-8213/ab75f010.3847/2041-8213/ab75f0 CrossRefGoogle Scholar
Collaboration, Planck, Aghanim, N., Akrami, Y., et al. 2020, A&AP, 641, A6, doi: http://doi.org/10.1051/0004-6361/20183391010.1051/0004-6361/201833910 CrossRefGoogle Scholar
Riess, A. G., Yuan, W., Macri, L. M., et al. 2022, ApJ, 934, L7, doi: http://doi.org/10.3847/2041-8213/ac5c5b10.3847/2041-8213/ac5c5b CrossRefGoogle Scholar
Roth, M. M., Jacoby, G. H., Ciardullo, R., et al. 2021, ApJ, 916, 21, doi: http://doi.org/10.3847/1538-4357/ac02ca10.3847/1538-4357/ac02ca CrossRefGoogle Scholar
Schönberner, D., Jacob, R., Sandin, C., & Steffen, M. 2010, A&A, 523, A86, doi: http://doi.org/10.1051/0004-6361/20091342710.1051/0004-6361/200913427 CrossRefGoogle Scholar
Wong, K. C., Suyu, S. H., Chen, G. C. F., et al. 2020, MNRAS, 498, 1420, doi: http://doi.org/10.1093/mnras/stz309410.1093/mnras/stz3094 CrossRefGoogle Scholar