Hostname: page-component-54dcc4c588-hp6zs Total loading time: 0 Render date: 2025-10-08T20:26:26.686Z Has data issue: false hasContentIssue false

ALMA Observations of Molecular Line Emission from High-excitation Bipolar Planetary Nebulae

Published online by Cambridge University Press:  06 October 2025

Paula Moraga Baez
Affiliation:
School of Physics and Astronomy and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, Rochester, NY, USA
Joel H. Kastner
Affiliation:
School of Physics and Astronomy and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, Rochester, NY, USA Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology
Jesse Bublitz
Affiliation:
Green Bank Observatory, Green Bank, WV, USA
Javier Alcolea
Affiliation:
Observatorio Astronómico Nacional, Madrid, Spain
Miguel Santander-García
Affiliation:
Observatorio Astronómico Nacional, Madrid, Spain
Thierry Forveille
Affiliation:
Institut de Planetologie et d’Astrophysique de Grenoble, France
Pierre Hily-Blant
Affiliation:
Institut de Planetologie et d’Astrophysique de Grenoble, France
Bruce Balick
Affiliation:
Department of Astronomy, University of Washington, Seattle, WA USA
Rodolfo Montez Jr.
Affiliation:
Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USA
Caroline Gieser
Affiliation:
Max Planck Institute for Extraterrestrial Physics, Munich, Germany

Abstract

We present early results from our program of ALMA Band 6 (1.3mm) molecular line mapping of a sample of nearby, well-studied examples of high-excitation, bipolar/pinched-waist and molecule-rich planetary nebulae (Hubble 5 and NGC 2440, 2818, 2899, 6302, and 6445). We have mapped these planetary nebulae (PNe) in isotopologues of CO as well as various molecular line tracers of high-energy irradiation, such as HCN, CN, HNC, and HCO+, with the complementary goals of establishing nebular kinematics as well as the zones of UV-heated and X-ray-ionized molecular gas within each nebula. The resulting high-resolution ALMA molecular emission-line maps reveal the regions of high-excitation bipolar PNe in which molecular gas, presumably ejected during asymptotic giant branch stages of the PN progenitor stars, survives and evolves chemically. We present a summary of molecular species detected to date in the sample nebulae, and we use example results for one PN (NGC 6455) to demonstrate the power of the ALMA data in revealing the structures, kinematics, and compositions of the equatorial molecular tori that are a common feature of the sample objects.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bublitz, J., Kastner, J. H., Santander-Garca, M., et al. 2019, A&A, 625, A101.Google Scholar
Bublitz, J., Kastner, J. H., Hily-Blant, P., et al. 2023, ApJ, 942, 14.CrossRefGoogle Scholar
Cahn, J. H., Kaler, J. B., & Stanghellini, L. 1992, A&AS, 94, 399 Google Scholar
Corradi, R. L. M. & Schwarz, H. E. 1995, A&A, 293, 871 Google Scholar
Edwards, J. L. & Ziurys, L. M. 2013, ApJL, 770, L5 CrossRefGoogle Scholar
Edwards, J. L., Cox, E. G., & Ziurys, L. M. 2014, ApJ, 791, 79 CrossRefGoogle Scholar
Fang, X., Zhang, Y., Kwok, S., et al. 2018, ApJ, 859, 92 CrossRefGoogle Scholar
Frew, D. J., Bojičić, I. S., & Parker, Q. A. 2013, MNRAS, 431, 2 CrossRefGoogle Scholar
Gieser, C., Beuther, H., Semenov, D., et al. 2023, A&A, 674, A160.Google Scholar
González-Santamara, I., Manteiga, M., Manchado, A., et al. 2019, A&A, 630, A150.Google Scholar
Guerrero, M. A., Villaver, E., Manchado, A., et al. 2000, ApJs, 127, 125.CrossRefGoogle Scholar
Huggins, P. J. & Healy, A. P. 1989, ApJ, 346, 201 CrossRefGoogle Scholar
Huggins, P. J., Bachiller, R., Cox, P., et al. 1996, A&A, 315, 284 Google Scholar
Huggins, P. J., Forveille, T., Bachiller, R., et al. 2000, ApJ, 544, 889 CrossRefGoogle Scholar
Huggins, P. J., Bachiller, R., Planesas, P., Forveille, T., & Cox, P. 2005, ApJs, 160, 272 CrossRefGoogle Scholar
Karakas, A. I. & Lugaro, M. 2016, ApJ, 825, 26.CrossRefGoogle Scholar
Kastner, J. H., Weintraub, D. A., Gatley, I., Merrill, K. M., & Probst, R. G. 1996, ApJ, 462, 777 CrossRefGoogle Scholar
Miller Bertolami, M. M. 2016, A&A, 588, A25.Google Scholar
Phillips, J. P., Williams, P. G., Mampaso, A., et al. 1992, ApSS, 188, 171.Google Scholar
Schmidt, D. R., Gold, K. R., Sinclair, A., et al. 2022, ApJ, 927, 46 CrossRefGoogle Scholar
Stanghellini, L., Villaver, E., Manchado, A., et al. 2002, ApJ, 576, 285.CrossRefGoogle Scholar